所有提交的电磁系统将被重定向到在线手稿提交系统。作者请直接提交文章在线手稿提交系统各自的杂志。

分析优化悬挂参数的半独立悬挂汽车

学历r·艾耶1,r . Venkatachalam2,a Balaraju3
  1. P G学生,机械工程,系国家理工学院,瓦朗加尔、印度
  2. 机械工程教授,部门,国家技术学院,瓦朗加尔、印度
  3. 研究学者,机械工程,系国家理工学院,瓦朗加尔、印度
相关文章Pubmed,谷歌学者

访问更多的相关文章国际创新研究期刊》的研究在科学、工程和技术

文摘

汽车的悬架系统不仅支持身体的车辆,发动机和乘客也吸收冲击引起的粗糙度。今天大部分的汽车提供独立悬挂的前轮后轮和传统悬架。这种悬架系统是本文称为半独立悬挂系统。汽车运动时,粗糙度的道路不断给悬架系统通过励磁的轮胎。悬架系统的刚度和阻尼发挥重要作用在吸收冲击和提供舒适的乘客。本文试图获得这些参数的最优值为乘客提供最大的舒适。

关键字

半独立悬架系统,完整的汽车模型,优化悬挂参数

介绍

悬架系统是汽车最重要的系统之一。其主要目的是不仅支持引擎,它的组件,乘客,还把它们与冲击产生由于粗糙度的道路。这是一个实践从一开始就有一个帧叫底盘是支持通过弹簧和阻尼器前后轮轴。这种类型的悬架系统被称为传统的悬架系统。有另一种类型的悬架叫做独立悬挂系统,一个轮子的轴铰接到身体和举行由弹簧和阻尼器的位置,放置在轴和身体之间。没有单独的底盘和车辆本身的身体充当底盘。今天的许多汽车独立悬架用于前轮和后轮传统悬架。在这篇文章中,这样的一个系统被称为半独立悬挂系统。悬架系统的研究一直是许多研究人员感兴趣的主题。悬架系统可以建模为四分之一汽车模型或半车模型或一个完整的汽车模型。 The quarter car model or half car model yield the results very quickly but they are not accurate because they do not represent the system in a realistic way because the roll and/or pitch motions cannot be taken into account by these models. Full car model considers the entire vehicle as it is. The results can be considered to be accurate and realistic. However, the analysis becomes more complex. Hedrick [1] considered a quarter car model with hydraulic actuator acting under the effect of coulomb friction. An absorber based nonlinear controller and adaptive nonlinear controller are proposed. Employing two sensors, one for displacement and other for velocity measurements, Majjad [2] considered a quarter car model and estimated the nonlinear damping parameters. Gobbi and Mastin [3], Wei Gao et al. [8] studied dynamic behaviour of passively suspended vehicles running on rough roads. The road profile is considered to give random inputs to the suspension system. Rajalingam and Rakheja [4] studied the dynamic behaviour of quarter car model under nonlinear suspension damper. Ahmed Faheem [5] studied the dynamic behaviour using quarter car model and half car model for different excitations given by the road. Jacquelien et al. [6] used electrical analogy in conjunction with quarter car model and studied the control scheme of the suspension system. Wei Gao et al. [7] also studied the dynamic characteristics considering the mass, damping and tyre stiffness as random variables. Kamalakannan et al. [9] tried adaptive control by varying damping properties according to the road conditions. Sawant et al. [10] developed an experimental procedure for determining the suspension parameters using a quarter car model. Thite [11] refined the quarter car model to include the effect of series stiffness. State space equations are employed to calculate the natural frequency and model damping ratios. Gadhia et al. [12] analysed quarter car model for rear suspension using ADAMS software. Wei Gao et al. [13] investigated dynamic response of cars due to road roughness treating it as random excitation. Lin [14] performed a time domain direct identification for vehicle mass, damping and stiffness. Husiyno Akcay [15] studied multi objective control of half car suspension system. It is observed that when the tyre damping coefficients are precisely estimated, the road holding quality of the suspension system can be improved to some extent. Li-Xing Gao [16] considered a half car model in conjunction with pseudo-excitation for the road conditions and studied the dynamic response of the vehicle. Thite et al. [17] used a frequency domain method for estimating suspension system parameters. Roberto Barbosa [18] studied the frequency response of half car model due to pavement roughness. Roberto Barbosa [19] also investigated vibrations of vehicles subjected to a long wave measured pavement irregularity.
正尝试分析四惠勒完全独立悬架系统。利宾李[20]通过多体模型进行了计算机仿真研究,确定20自由度。佩特加斯帕[21]认为完整的汽车模型,提出了悬挂参数识别方法考虑组件的非线性性质。Anil Shirahatt等。[22]试图最大化舒适度考虑完整的汽车模型。遗传算法被用来执行优化到达悬挂参数的最优值。Hajkurami等。[23]研究了频率响应的一个完整的汽车模型作为系统的七自由度。Ikbal Eski[24]获得神经网络基础控制系统完整的汽车模型。Guidaa等。[25]提出的方法确定一个完整的汽车模型的参数。分析了设计一个主动式悬吊系统。Balaraju Venkatachalam分析汽车使用全车的动态行为模型,完全传统的悬挂系统[26]和完全独立悬架系统[27]。 In this paper, an attempt is made to study how the values of the stiffness and damping of a semi-independent suspension system affect the comfort level of the passengers. The work in this paper is divided in two stages. 1) Text- Detection 2) Inpainting. Text detection is done by applying morphological open-close and close-open filters and combines the images. Thereafter, gradient is applied to detect the edges followed by thresholding and morphological dilation, erosion operation. Then, connected component labelling is performed to label each object separately. Finally, the set of selection criteria is applied to filter out non text regions. After text detection, text inpainting is accomplished by using exemplar based Inpainting algorithm. Paper is organized as follows. Section II describes automatic text detection using morphological operations, connected component analysis and set of selection or rejection criteria. The flow diagram represents the step of the algorithm. After detection of text, how text region is filled using an Inpainting technique that is given in Section III. Section IV presents experimental results showing results of images tested. Finally, Section V presents conclusion.

配方

图1显示了一个示意图半独立悬挂系统的安排。是观察到的正面没有轴,因此,只有两个质量,m1和m2可能代表前胎的质量。也观察到在后侧有一个质量m3,这可能被视为一种质量考虑轴的质量以及大量的后轮胎。主体的质量可能是由m。G和G2的中心主体和后桥的质量。距离B, G点所在的L1和L2如图。(K1, C1), (K2 C2)和(K3, C3)可能代表一个轮胎的刚度和阻尼特性,分别前减震器和后减震器。坐标x1和x2可以用来代表群众m1和m2的垂直运动,分别。后桥可以上下移动,也可以表现出辊运动。协调x3可能代表G2的垂直运动,和γ2可能代表滚动运动。主体可以展示横滚和俯仰运动,γ和λ,除了质量中心的垂直运动x g .总的来说,整个系统的运动可能是由七个坐标描述,x1, x2, x3, x,γ2,γ和λ,那么该系统拥有7个自由度。 It is also to be observed in the figure that the displacements induced by the road profile are indicated by yi , i = 1 to 4 . The equations of motion may be derived as
图像
图像

对悬架系统的分析

基于一个实际的道路车辆Santro兴、数值被分配到不同的参数,如下所示。
图像
在s1 = 0.1 m和τ= 1.6年代,运动方程是集成和z2观测的值。他们也观察到定期改变。z2的最大值。周期脉冲扰动是首选的,因为它预计会方便和易于观察z2的最大值。给出了各种参数除了C2和C3,正如上面提到的值。目前分析C2和C3被相同的值C .阻尼C是不同的从0到10000 N。s / m的步骤。对于每个阻尼值,运动方程集成(4)中描述的扰动方程。z2的最大值是指出每个阻尼值。图2显示了变化(z2)马克斯与c可能观察到阻尼约1000 N的值。s / m (z2)马克斯是最低的价值。阻尼的存在最优值可能解释如下。当阻尼几乎为零,系统将是一个无阻尼系统。 Therefore, one can expect large amplitudes of forced vibrations. When damping is very large, it may be realised that the damper is providing a rigid connection of chassis to the axles. Hence, the entire disturbance is directly transferred to the main body. One should allow free movement of the plunger of the damper for pumping out the energy of the system effectively. Therefore, there must exist an optimum value of damping.
图像
振动的弹簧也扮演着重要的角色的主体。在阻尼器的情况下,如果弹簧刚度很大,它将是一个刚性连接。同时,春天不能零刚度,因为它是一个两个振动系统的基本要素。然后觉得有趣的观察(z2)马克斯不同刚度和阻尼都是不同的,同时进行。为了计算刚度K2和K3采取相同的值k的刚度和阻尼都是同时在步骤和不同的值(z2)马克斯。图3显示了一个三维的情节(z2)马克斯。可能观察到获得的表面是凹的,表明全球最低。方便的可视化的最佳点,值——(z2)马克斯绘制如图4所示。凸表面使它方便观察参数的最优值。最优值被发现是K2 = K3 = 8300 N / m和C2 = C3 = 700 N / m。
图像
图像

结束语

工作摘要和重要结论,基于目前的工作可能是总结如下。
(我)一个完整的汽车模型的半独立悬架系统研究了悬架系统的最佳参数。
(2)为目的的研究,各种参数的值对应于一个真正的实用的汽车。
(3)的原因存在最佳刚度和阻尼参数的值进行了探讨。
(iv)定义一个量z2指示乘客的舒适度。
(v)给出周期脉冲在右边前轮和z2观察到的最大值。
(vi)的刚度和阻尼都是不同的两个参数步骤和(z2)马克斯是观察到的变化。
(七)变化三维图所示。
(八)最优值参数表示的数据。

引用

  1. 亨德里克,j·K。,“Nonlinear control of a Quarter Car active suspension”, Proceedings of the American Control Conference, Chicago, June 1992.
  2. Majjad, R。,“Estimation of suspension parameters”, Proceedings of the IEEE International Conference on Control Application, Hartford, October 1997.
  3. 米兰球迷,m . Mastinu, G。,“Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles”, Journal of Sound and Vibration, Vol. 245, No.3, pp. 457 – 481, 2001.
  4. Rajalingam, c和Rakheja,年代。,“Influence of suspension damper asymmetry on vehicle vibration response to ground excitation”, Journal of Sound and Vibration, Vol. 266, pp.1117 – 1129, 2003.
  5. Ahmad作出贡献,Firoz阿拉姆,Varikan托马斯“1/4汽车悬架动态分析模型和半车模型”,第三BSME-ASME热能工程国际会议,达卡,2006年12月。
  6. Jacquelien,硕士,Scherpen, Dimitri Jeltsema, and Francois Maulny, “Parallel damping injection for the quarter car suspension system”, Proceedings of the 17th International Symposium on mathematical theory of networks and Systems, Japan, July 2006.
  7. 高小薇。,Nong Zhang., “Dynamic analysis of vehicles with uncertain parameter”, 14th International Congress on Sound and Vibration, Australia, July 2007.
  8. 魏高,笨蛋。戴,小君。,“A stochastic quarter car model for dynamic analysis of vehicle with uncertain parameters”, International Journal of Vehicle Mechanics and Mobility, Vol. 46, No.12, pp. 1159 – 1169, 2008.
  9. Kamalakannan K . .,Elaya Perumal, A., Mangalaramanan, S., Arunachalam, K., “Performance analysis of behaviour characteristics of CVD (semi active) in quarter car model”, Jordan Journal of Mechanical and industrial engineering, Vol. 5, pp. 261 – 265, June 2011.
  10. Sawant,萨达姆政权,Belwakar,V., Kamble, A., Pushpa, B., and Patel, D., “Vibrational analysis of quarter car vehicle dynamic system subjected to harmonic excitation by road surface”, Undergraduate Academic Research Journal ,Vol. 1, pp. 46 – 49, 2012.
  11. Thite, A.N.,“Development of a refined quarter car model for the analysis of discomfort due to vibration”, Advances in Acoustics and Vibration, Hindawi Publishing Corporation, 2012.
  12. Gadhia Utsav D。Sumanth, P。,“Quarter model analysis of Wagon-R Car’s rear suspension using ADAMS”, International Journal of Engineering Research and Technology, Vol. 1, pp. 1 – 5, 2012.
  13. 高,W。,Zhang, N., and Du, H.P., “A half-car model for dynamic analysis of vehicles with random parameters”, 5th Australasian Congress on Applied Mechanics, Brisbane, Australia, December 2007.
  14. 林,Y。,and Kortum, W., “Identification of system physical parameters for vehicle systems with nonlinear components”, International Journal of Vehicle Mechanics and Mobility, Vol. 46, No.12, pp. 354 – 365, 2007.
  15. Husenyin Akcay。,and Semiha Turkay., “Influence of tire on mixed H2 / H∞ synthesis of half car active suspensions”, Journal of Sound and Vibration, Vol. 322, pp.15 – 28, 2009.
  16. 李兴高。,and Li-Ping-Zing., “Vehicle vibration analysis in changed speeds solved by pseudoexcitation method”, Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2010.
  17. Thite, A.N.,Banvidi, S., Ibicek, T., and Bennett, L., “Suspension parameter estimation in the frequency domain using a matrix inversion approach”, International Journal of Vehicle Mechanics and Mobility, Vol. 49, No.12, pp. 1803 – 1822, 2011.
  18. 罗伯特·Spinola巴博萨。,“Vehicle dynamic response due to pavement irregularity”, Journal of Brazilian Society of Mechanical Sciences and Engineering, Vol. 33, No. 23, pp. 302 – 307, 2011.
  19. 罗伯特·Spinola巴博萨。,“Vehicle vibration response subjected to long wave measured pavement roughness”, Journal of Mechanical Engineering and Automation, Vol. 2, pp. 17 – 24, No. 2, 2012.
  20. 利宾李,李羌族。,“Vibration analysis based on full multi-body model for the commercial vehicle suspension system”, Proceedings of the 6th International Conference on Signal Processing, Robotics and Automation, Greece, pp. 203 – 207, February 2007.
  21. 佩特加斯帕,Laszlo Nadai。,“Estimation of dynamical parameters of road vehicles on freeways”, 5th International Symposium on Intelligent Systems and Informatics, Serbia, August 2007.
  22. Anil Shirahatt。,Prasad, P.S.S., Pravin Panzade, and Kulkarni, M.M., “Optimal design of passenger car suspension for ride and road holding”, Journal of Brazilian Society of Mechanical Sciences and Engineering, Vol. 30, No.1, pp.66 – 74, 2008.
  23. Samandari Hajkurami, H, H。、Ziaei-Rad年代。,“Analysis of chaotic vibration of nonlinear seven degree of freedom full car model”, 3rd International Conference on Integrity, Reliability and Failure, Portugal, July 2009.
  24. Ikbal Eski。,and Sahin Yildirim., “Vibration control of vehicle active suspension system using a new robust neural network control system”, Journal of Simulation Modelling Practice and Theory, Vol. 17, pp. 778 – 793, 2009.
  25. Guidaa D。,Nilvetti,F., and Pappalardo, C.M., “Parameter identification of full-car model for active suspension design”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 40, No. 2, pp. 138 – 148, 2010.
  26. Balaraju, a .和Venkatachalam R。,“Analysis of vibrations of automobile suspension system using full car model”, International Journal of Scientific and Engineering Research, Vol. 4, Issue 9, pp. 2305-2311, September 2013.
  27. Balaraju, a .和Venkatachalam R。,“A study on conventional versus independent suspension system of an automobile”, Applied Mechanics and Materials, Vols. 541-542 pp. 827-831, 2014.