所有提交的电磁系统将被重定向到在线手稿提交系统。作者请直接提交文章在线手稿提交系统各自的杂志。

因子分析的关联杜恩谷流鱼属

迪帕莉Rana1Ganesh Datt Bhatt)2
  1. 研究人员,部门动物学乌D.B.S. (PG)学院北阿坎德邦,印度
  2. 实验室主管和教员,石油工程系和地球科学,石油大学能源研究中,乌北阿坎德邦、印度
相关文章Pubmed,谷歌学者

访问更多的相关文章国际创新研究期刊》的研究在科学、工程和技术

文摘

鱼类的多样性的研究东西方杜恩谷流(2010 - 2012)即Baldi,歌曲和Suswa东部和西部吨,峨山透露它是由56个物种属于5个订单,13科30属。目前发现的结果FactorAnalysis工具应用于30属,分级分为两类即。,频繁(28属)和罕见的物种属/(2属+ 12种),以找出关联在不同属的决定因素。四个因素组(由23频繁属+ 1套不属/物种)是通过斜轴旋转,考虑从480年的个人数据矩阵集合,重载荷的≥0.70。为了方便和容易理解,各种因素已经命名的基础上属/物种显示最高的加载在每个因素。鱼属的分布根据加载值在不同因素显示一个特定模式的协会和相对于强调有意义的解释各种属的生态栖息地特征。

关键字

杜恩山谷,因子分析,鱼属,主成分分析,多变量分析。

我的介绍。

生态学重要论述,结合一些研究已经完成从[1]。研究涵盖的各个方面河的生态及其连续性概念已经由Vannote et al ., [2]。多元统计方法,包括因子分析(FA)已经被成功运用的允许推导隐藏信息的数据集可能影响环境[3]。生态多元统计的应用极大的扩大了[4],使用各种方法来观察方面像物种协会分析[5],物种地区关系[6]。所有这些分析提出采用FA完成,主成分分析(PCA),多元方差分析,Deterended对应分析(DCA)和典范对应分析(CCA) [7 - 9]。随着计算升级增加在最近几十年,已经有多元的评估增加鱼类的分布在很大的地理区域[10 - 12]。鱼类的分布与水质统计各个变量[13]。研究鱼组合受到环境因素的影响,变化之间的地理区域和时空特征定义的鱼组合恰当地解决了各种各样的工人在印度之外[14 - 22],他们纷纷使用统计工具。、FA、主成分分析、多变量方差分析DCA、CCA。使用统计工具,实现鱼类多样性和水质之间的相关性,比较少量子印度的工作已经启动,除了少数[汽车]。FA是一个数学技术组物种丰富的常见模式,允许客观评估的物种协会及其分布[18]。 This was aptly worked out by Rose and Echelle[18] while evaluating the associations of fishes in Little river of Central Texas. FA was also used to determine generalized pattern and their correlation with certain environmental variables by Stevenson et al., [15] while analysing the distributional pattern of fish species in Western and Central Oklahoma. The present study was conducted using FA to determine associations amongst various fish genera, their distribution patterns, genera/species associations, habitat correlations of observed generic groups and to derive meaningful interpretations regarding the distributional pattern of fishes in the riverine ecosystem of Doon Valley, Uttarakhand, India.

二世。材料和方法

研究区域

杜恩山谷,部分地区乌(纬度- 29 o58′和30 o32′N和经度- 77 o35′和78年o20′E)由2主要江河流域,即恒河与亚穆纳河流域。本研究进行这两个河流系统包括五个主要河流。Baldi,歌曲、Suswa吨,峨山(无花果。1),不同地区的气候潮湿,潮湿的亚热带南部温带北部山区和宽温度范围从4.40 - -35.10°C在研究期间。均值最小和最大温度记录11.90°C(2011年1月)和28.0°C(2011年6月),分别。
年降雨量是高度控制的变量,主要是山岳志,82 - 87的年降雨量发生在南部,西部季风的影响。最大降雨记录在6月- 9月和7月,2010年是最潮湿的月,收到约545.80毫米的降雨量。冬雨是普遍在12月- 3月期间,约占总数的8%年降雨量。相对湿度也是可变的。2010年11月,是最潮湿的6月(18%),而2011年是最潮湿的在071小时(63%)。砂壤土、砂质粘土、粗砂、粉砂质粘壤土、沙壤土,砂和粘土类型的主要土壤类型杜恩山谷。定期抽样做一段24个月(2010年3月- 2012年2月)20取样站建立在河流上面提到的。
每个河分为延伸沿其长度,根据高度的变化产生与空间和时间的相互关系。每个伸展占地大约4 - 7公里的距离,因此建立采样站点。鱼样本收集的用人标准齿轮,使用各种不同网格大小的渔网——吉尔网,撒网,拖动渔网的帮助下训练有素的渔民在抽样杜恩谷的东部和西部,分别(图2)。鱼样本保存在4%福尔马林,买了实验室常规识别、对称的和可用的光下的形态学分析标准文献和校订的作品[28-34]。
研究鱼类的多样性即东西方杜恩谷流。,Baldi, Song and Suswa in East and Tons and Asan in West has revealed it to be represented by 56 species belonging to 5 Orders, 13 Families and 30 Genera. For the present study, the original genera × locality data matrix was prepared (by pooling the total number of individuals of a species data, within a particular genus) and was finally subjected to FA using STATISTCA, software [35]. Data was reduced and summarized upto the generic level so as to nullify the error arising out due to the randomness observed in the pattern of distribution of certain species. In the data matrix only 28 genera were considered which were represented by 20 or more individuals (Table 1).
此外,属likeCyprinus Raiamas拥有一个物种和Puntiusterio Bariliustileo, Bariliusshacra, Lepidocephalichthysannandalei, Glyptothoraxtelchitta, Clariasgariepinnus, Colisalalia, Colisalabiosus, Channamaruliusand Channaharcourtbutleri已经包含在序列号29岁为一组罕见属/物种由于这样的事实,尽管他们定期收集来自某些站点,但他们的数量是少于20(表1),斜轴旋转,考虑从480年的个人数据矩阵集合[35]。下的载荷≥0.70已经把载荷最高得分(粗体)(表1)。
为了方便和容易理解各种因素已经命名根据属的名称/物种拥有最高的加载在每个因素[18]。因子得分的分布显示一般模式强调有意义的解释基于各种属的生态特征(表1)。
图像
图像

三世。结果

两年的现场数据收集和实验室观测资料显示,共有56个物种,属于5个订单,13科30属,代表所有的鱼动物群所选5杜恩谷流。英足总工具应用于30属,分次即在两个类别。,frequent (28 genera) and infrequent genera/species (2 genera + 12 species), with a view to find out determinants of associations amongst various genera. Out of 29 set of variables, four Factors resolved with loading values ≥ 0.70, represented by 24 genera and one set of infrequent genera/species. Four genera are not resolved under any Factor. Total variance extracted by the four Factors is 77.00% (Table 1).
图像
因子1(集团)化石- 15属积极载荷因子1与最高分数从0.74到-0.90不等。根据它们的相对分数,这15个属可以安全地放置在三个类别根据高度的范围的重叠。
1。类别——我:0.90 - -0.87 (300 - 500)
2。类别- II: 0.85 - -0.78 (300 - 500)
3所示。类别- III: 0.79 - -0.74 (300 - 500)

类别我:

三个属(Heteropneustes Amblycepsand claria)出现1最高度相关的因素。因为,Heteropneustesexhibits最高分数;为了方便和理解因子1是贴上Fossilis集团由于沼泽,缓慢移动,普通式地面条件提供了住所和喂养鱼。

类别2:

比较下为了七属最高得分(0.85 - -0.78)。,Esomus (0.85), Macrognathus (0.85), Danio (0.85), Badis (0.83), Xenentodon (0.82), Devario (0.80) and Rasbora (0.80) are more frequent than the earlier three genera and inhabit stretches with feeble flow.

三级:

最高的Mastacembelus积极载荷因子1(0.79),鲤鱼(0.78),Lepidocephalichthys (0.77), Acanthocobitis(0.77)和Mystus (0.74)。鱼属下降在三级表示其他领域的特定栖息地少和风险。同时因子1的分数揭示了栖息地。
因子2(雪-鳟鱼组):只有四个属负载荷因素2。Schizothorax保持最高的得分(-0.83)比其他三个。Glyptothorax Schistura(-0.76)(-0.73)和Schizothorachthys (-0.70)。这些属的栖息地和高度评价,它变得明显,这组构成了鱼住在高海拔范围Schizothorax和Schistura独家的冷水,快速运行流住鱼(海拔范围从800 - 1000 m)与适应。,lips and labial folds modified for adhesion (Schizothorax), adhesive apparatus on the chest (Glyptothorax), long narrow band-shaped caudal peduncle, reduced eyes, highly placed and reduced external gill openings etc. As far as Glyptothorax and Schizothorachthys are concerned, though their distributional ranges (500 - 800 m) overlaps with that of Schizothoraxbut their downstream range of distribution may be beyond the lower limit of Schizothorax.
因子3(食组):四个属的最高正载荷因子3”显示的最高得分(0.82)。至于其他三个,他们的分数是不远的不同(Labeo 0.79, Tor 0.78和Crossocheilus0.76) 3食意义从而亲密的形成因素,主要是由于这样的事实,他们已经居住范围从急流的高海拔(800米)通过适度的急流(500 - 800)无力地快速流动的延伸(300 - 500)。特征显示所有属廉形态适应从吸附的盘食高缩进的下唇上唇,下颚角覆盖,非常突出的上颌唇角的连续的嘴巴,长窄,band-shaped尾花梗(Crossocheilus, Labeo Tor)。
因子4(鱼组):只有一个属Colisa(一个物种fasciatus)最高载荷因子4(0.81),其他载荷最高(0.73)的组属(S7和Raiamas S7鲤属)和物种(Puntiusterio、Bariliustileo Bariliusshacra, Lepidocephalichthysannandalei, Glyptothoraxtelchitta, Clariasgariepinnus, Colisalalia, Colisalabiosus, Channamarulius和Channaharcourtbutleri)指定了罕见的状态(表1)由于这样的事实,他们是罕见的集合(不到20个人和局限于特定区域特定的采样站即。,其中大部分(Puntiusterio Bariliustileo, Bariliusshacra, Lepidocephalichthysannandalei, Glyptothoraxtelchitta, Clariasgariepinnus, Colisalalia, Colisalabiosus, Colisamarulius和Channaharcourtbutleri) S11的居民和S12的无力和沼泽Suswa流动。的休息,Cyprinuscarpiofrom S7和Clariasgariepinnus S15是两个意外超级跑车逃到自然栖息地,但是居住的连接池类型植物的栖息地。其他贡献者因素4载荷Bariliustileo和Raiamas森林的流星锤,流动的歌(S7)和Bariliusshacra同样特点的峨山(S20)。还值得一提的载荷因子4(罕见的组属/物种)主要是来自硅谷的新记录即起到了推波助澜的作用。,Puntiusterio (S12), Bariliustileo(S12), Bariliusshacra(S12), Lepidocephalichthysannandalei(S12), Glyptothoraxtelchitta(S12), Clariasgariepinnus(S12), Colisalalia(S12), Colisalabiosus(S12), Channamarulius(S12) and Channaharcourtbutleri(S12).
显然,根据取样的位置延伸,所有这些新记录与河的下游部分Suswa特征部分通过保护,森林地区和部分通过大量感染水生植物,在河。

四、讨论

鱼属/物种的丰富数据足总已经明确生产因素哪一组属/物种丰富的常见模式,允许客观评估属/物种协会及其分布[18]。几乎类似于史蒂文森观察et al ., [15], FA的因素提取鱼属/因素组显示各种鱼类分布和环境变量和反映各种鱼的生物形式一般模式。本研究试图名字的因素任意使用通用名称/特定物种的名字显示最高的加载一个因素(15 - 16,18)。高(+ ve)相关性表明频繁属特殊取样站/物种共生杜恩谷东部(鲐、Devario Esomus,波鱼,Amblyceps,高清晰,Heteropneustes, Mystus, Macrognathus从因子1;Schizothorax、Schizothoracthys Schistura Glyptothorax使用因素3和Colisafasciatus组罕见的4属/物种使用因素。高(负)相关性表明属/不常共存的物种(+ ve)相关性表明属/物种(Labeo Crossocheilus,食2 Tor和因素也被考虑由坎图和Winemiller[22]描述组合模式在主成分分析的基础。玫瑰和中阶梯光栅[18]发现(+ ve)载荷的不同物种在同一因素往往同时发生,他们往往不会发生在低丰度、物种有(负)载荷因子(负)证实这里的载荷因子3东杜恩和因子下的属西方杜恩2。+ ve和负载荷也由于鱼的可用性在不同的季节。坎图和Winemiller[22]在分析鱼组合得出结论,根据季节丰富物种纵坐标用(+ ve)值显示在秋季和冬季丰度高,(负)值表示在夏季高丰富。
前一部分在冬季很适用于季节性的鱼类数量在杜恩谷模式。当审查结果足总已经发现7个属,包括Puntius Chagunius, Barilius, Xenentodon, Mastacembelus, Badisand Puntius东部杜恩和四个物种包括高清晰、Mystus, Mastacembelus和西方杜恩Colisa没有发现解决在任何因素(r =≤0.70),尽管他们很频繁的样本集合。玫瑰和中阶梯光栅[18]认为物种不是解决任何的因素是那些有独立的分布。史密斯和费舍尔[14],史蒂文森等。[15]也谈到了独立性的分布。在目前观察这样不解决属/物种,尽管附近发现了一些因素,但是他们的制服和频繁的全年可用性不是主要的影响变化的关联,导致他们在发生的独立性。FA的结果可能证实物种形成类似的协会甚至冷淡地分离流的性质不同[15]以典型的山流的协会/高海拔住宅(Schizothorax、Schizothoracthys Schistura和Glyptothorax)和池/沼泽住鱼(鲐、Devario Esomus,波鱼,Amblyceps,高清晰,Heteropneustes, Mystus, Macrognathus)。
目前的观察研究中,颞可变性模式,描述鱼类pool-dwellers和hillstream形式,他们的优惠底物亲和力也观察到结果的FA东西方杜恩谷的鱼类。丰富证据积累这表明措施的社会行为和结构[17]回应类似在不同流系统和它们的主要功能流的物理和气候方面的环境。结果表明,鱼属/物种可以被放置在一个纵向的环境梯度(20、21)因为在河中物理变量系统遵循一个连续梯度的物理条件[2]。这项研究揭示了物种的数量增加从上游到下游部分[19]。因子1和因子分析4从东和因子1从西显然已经阐明,由于异质性的下游延伸,鱼社区稳定和多样化的[1]。鱼属的分布根据加载值在不同因素显示一个特定模式的协会和相对于强调有意义的解释各种属的生态特征,它们之间的关联的主要决定因素。

诉的结论

本研究的结果。,factor groupings resolved after FA separately, for Eastern and Western Doon valley are indicative of meaningful interpretation, based on ecological preferences by various genera. In general, FA also supported the observations on distributional pattern that the factors identify the associations from upstream to downstream sections. Through the results of FA, temporal variability pattern, characterization of fishes into pool dwellers and their preferential substrate affinity have become evident. The results have clearly shown that the fish genera/species can be placed along a longitudinal environmental gradient since the physical variables within a river system followed a continuous gradient of physical conditions. FA has also elucidated that due to heterogeneity in downstream stretches, fish communities are stable and diverse.

VI。确认

这项研究是由北阿坎德邦国务院科学技术,乌北阿坎德邦。作者欣然承认动物调查的支持和鼓励来自印度北部地区站,北阿坎德邦、印度的德拉敦,鱼动物区系的识别和在研究过程中对杜恩谷图书馆设施。作者也感谢拉曼Nautiyal博士科学家,印度林业研究理事会和教育,乌北阿坎德邦,印度为统计数据分析。

引用

  1. 哈钦森,g . E。,“A treatise on limnology II. Introduction to lake biology and limnoplankton”, John Wiley and Sons, New York, pp. 1115, 1967.
  2. Vannote, r . L。,Minshall, G. W., Cummins, K. W., Sedell, J. R. and Cushing, C. E., “The river continuum concept”, Canadian Journal of Fisheries and Aquatic Sciences, Vol.3, pp., 130-137, 1980.
  3. 阿拉姆·m·j·B。,Ahmed, A. A. M., Ali, E. and Ahmed, A. A. M., “Evaluation of surface water quality of Surma River using Factor analysis”, Proceeding International Conference on Environmental Aspects of Bangladesh (ICEAB10), Japan, pp. 186-188, 2010.
  4. Gauch, h . g . Jr .)“多变量分析在社区生态”,纽约,剑桥大学出版社,298年,1982页。
  5. Bhatt,国民生产总值和阿加瓦尔,”栏目,“Floral Diversity Assessment in Jim Corbet National Park, Ramnagar, Nainital, Uttarakhnad” Indian Forester, Vol. Vol. 139(12), pp. 1084-87, 2013.
  6. Bhatt,国民生产总值,Plant Diversity Assessment at Landscape Level in Jamnagar District, Gujarat using Satellite Remote Sensing and Geographic Information System. International Journal of Advancement in Earth and Environmental Sciences, Vol.1, No.1, pp. 23-35.
  7. Zar, j . H。,“Biostatistical analysis” Prentice-Hall Inc., Englewood Cliffs, NJ, pp. 718,1984.
  8. 路德维希,j·a·雷诺兹,j·F。,“Statistical Ecology, a Primer on Methods and Computing”, John Willey & Sons, pp. 337, 1987.
  9. 约翰逊,r . a .和Wichern d . W。,“Applied multivariate analysis”, 3rd eds. Prentice Hall, Englewood Cliffs, NJ, 3rd Edn., pp. 642,1992.
  10. 十字架,f·b·Mayden r·l·斯图尔特,j . D。,“Fishes in the Western Mississippi drainage”, In: Hocutt CHAEOW (Ed.) The zoogeography of North American Freshwater Fishes, New York, John Wiley and Sons, pp. 363-412, 1986.
  11. 拉森,已经,Johnson, D. L. and Lynch, W. E., “A Buoyant Pop Net for AccuratelySampling Artificial Habitat Structures”, Trans. American Fish Society, Vol.115, pp. 351-355, 1986.
  12. 休斯,R . m .腌,j . R。,“Longitudinal Changes in Fish Assemblages and Water Quality in the Willamette River, Oregon”, Transactions of the American Fisheries Society, Vol. 116, pp. 196-209, 1987.
  13. 霍克斯,c . L。,Miller, D. L. and Layher, W. G., “Fish Ecoregions of Kansas: Stream Fish Assemblage Patterns and Associated Environmental Correlates”, Environmental Biology of Fishes, Vol. 17, pp. 267-279, 1986.
  14. g . R .史密斯和费舍尔,d R。,“Factor Analysis of Distribution Patterns of Kansas Fishes”, In: Pleistocene and Recent Environments of the Central Great Plains. DepartmentGeology, University of Kansas, Lawrence, Special Publication, Vol. 3, pp. 259-277, 1970.
  15. 史蒂文森·M·M。,Schnell, G. D. and Black, R., “Factor Analysis of Fish Distribution Patterns in Western and Central Oklahoma”, Systematic Zoology, Vol. 23, pp., 202-218, 1974.
  16. 中阶梯光栅,a . a和迅速地,g D。,“Factor Analysis of Species associations among fishes of the Kiamichi River, Oklahoma”. Transactions of the American Fisheries Society, Vol. 105, pp. 17-31, 1976.
  17. 霍维茨,r . J。,“Temporal Variability Patterns and the Distributional Patterns of Stream Fishes”, Ecological Monograph, Vol., 48, pp. 307-321, 1978.
  18. 玫瑰,d . r .中阶梯光栅,A。,“Factor Analysis of Associations of Fishes in Little River, Central Texas, with an Inter Drainage Comparison”, American Midland Naturalist, Vol. 106 (2), pp. 379-391, 1981.
  19. Zalewski, M。,Frankiewicz, P., Przybylski, M., Banbura, J. and Nowak, M., “Structure and Dynamics of Fish Communities in Temperate Rivers in Relation to the Abiotic-Biotic Regulatory Continuum Concept”, Polish Archives of Hydrobiology, Vol. 37, pp. 151-176, 1990.
  20. Starmach, J。,Fleituch, T., Amirowicz, A., Mazurkiewicz, G. and Jelonek, M., “Longitudinal Patterns in Fish Communities in a Polish Mountain River: Their Relations to Abiotic and Biotic Factors”, ActaHydrobiologica, Vol. 33, pp. 353-366, 1991.
  21. Przybylski, M。,“Longitudinal Pattern in Fish Assemblages in the Upper Warta River, Poland”, Fundamental and Applied Limnology, Vol. 126, pp. 499-512, 1993.
  22. 坎图:大肠Winemiller, k . O。,“Structure and Habitat Associations of Devils River Fish Assemblages”, The Southwestern Naturalist, Vol. 42 (3), pp. 265-278, 1997.
  23. 约翰逊,j . a .和杂志。,“Diversity, Distribution and Assemblage Structure of Fishes in Streams of Southern Western Ghats, India”, Journal of Threatened Taxa, Vol. 1(10),pp. 507-513, 2009.
  24. 约翰逊,r·K。Furse, m . T。,Hering, D. and Sandin, L., “Ecological Relationships Between Stream Communities and Spatial Scale: Implications for Designing Catchment - Level Monitoring Programmes”, Freshwater Biology, Vol. 52, pp. 939-958, 2012.
  25. 古普塔,b K。,Sarkar, U. K. and Bhardwaj, S. K., “Assessment of Habitat Quality with Relation to Fish Assemblages in an Impacted River of the Ganges Basin, Northern India”, Environmentalist, Vol. 32 (1),pp. 35-47, 2012.
  26. Jha m K。,Patra, A. K., Gadhia, M., Ravi, P. M., Hegde, A. G. and Sarkar, P. K., “Multivariate Statistical Interpretation of Physico-chemical and Radiological Parameters of Tapi River Water due to the Operation of Kakrapar Atomic Power Station”, Online publication, pp. 73 - 85, 2012.
  27. Bhatt, j . P。,Manish, K. and Pandit, M. K., “Elevational Gradients in Fish Diversity in the Himalaya: Water Discharge is the Key Driver of Distribution Patterns”, PLoS One, Vol. 7 (9),2012.
  28. 天,F。,“The Fishes of India, Reproduced in 1958”, William Dowson and Sons Ltd. London, Vol. I and II; XX + 778 & pls.198, 1878.
  29. 天,F。,“The fauna of British India including Ceylon and Burma”, Fishes .Vol. I and II.Taylor and Francis, London, 1889.
  30. ,k . C。,“The Freshwater Fishes of India, Pakistan, Bangladesh, Burma and Sri Lanka”, Zoological Survey of India, Calcutta, pp. 475, Plates XIII, 1981.
  31. ,k . C。,“The Freshwater Fishes of the Indian region”, Narendra Publishing House, Delhi, 551, pp, 1999.
  32. 犯错误,p . k . Jhingran, a G。,“The Inland Fishes of India and adjacent countries”, Vols. 1-2 Oxford & IBH publishing Co., New Delhi, Bombay, Calcutta. Inland Fishes, India. 1-2. I-xvii+36 unnumbered +1-1158, 1 map, 1991.
  33. 纳尔逊,j·S。,“Fishes of the World”, John Wiley and Sons, Inc. 4th Edition: 624, pp, 2006.
  34. Vishawanath, W。,Lakra, W. S. and Sarkar, U. K., “Fishes of North East India”, Ed. The Director, National Bureau of Fish Genetic Resource, Lucknow, pp. 264, 2007.
  35. STATISTICA”STATISTICA Windows”, StatSoft, Inc ., 2001年。