关键字 |
水热调度、遗传算法、差分进化,MATLAB。 |
介绍 |
短期热液调度是一个至关重要的任务在一个电力系统的经济运行。安排好一代降低了生产成本,增加了系统的可靠性,并且最大化能量能力的水库利用有限的水资源在[9]。短期内水力热力调度的主要目的是找到最优的权力产生水力和热力单元,以减少热量单位的燃料成本。问题要求给定的水被用于这样一种方式,以实现这一目标,通常比所有热力系统的调度复杂得多。短程优化问题通常有一个间隔的一天或一个星期。这一时期通常分为子区间预定用途。这里的负荷、水流入和单元可用性假定为已知。一组起始条件,一个最优的每小时的时间表可以准备,最大限度地减少所需的目标,同时满足系统约束成功。成本优化水电站可以通过假设水头常数和转换增量水费特征增加燃料成本曲线通过乘以每立方米水的成本和应用的传统技术最小化代价函数。 |
遗传算法(GA)是基于模型计算搜索技术的遗传改变人口的个人轴承与进化的科学和遗传学密切相似之处。这些模型包括三个基本要素: |
•健康控制个人的能力来影响未来几代人。 |
•繁殖下一代操作产生的后代,通过选择和交配的过程。 |
•Geneticoperatorswhich确定遗传makeupof后代。 |
DE或微分进化属于类的进化算法,包括进化策略(ES)和传统遗传算法(GA)在[6],有别于传统的遗传算法在使用扰动向量,这是两个随机选择的向量之间的区别。德是一个计划,它生成试验向量的初始种群。在每个步骤中,德变异向量通过添加加权随机向量差异。如果审判的健身目标向量的向量比,试验向量替换目标向量的下一代。德提供了几种策略优化。他们分类按照下列符号如DE / x / y / z,其中x是指方法用于生成父向量将变异向量形式的基础,y表示的数量差异向量用于突变过程和z是交叉操作中使用的交叉方案创建后代人口。符号x可以“兰德”(随机选择的向量)或“最佳”(到目前为止所发现的最好的向量)。象征y即差分向量的数量,通常设置为1或2。交叉操作,二项(符号:“本”)或指数(符号:“经验值”)操作使用。这里使用的版本是德兰德/ 1 / bin, followingsteps描述:Initializaion,变异操作,交叉操作。 |
文献调查 |
热液需要调度为了找到最优分配的水电能源,这样混合热液系统的年度运营成本最小化。在过去的十年里热液调度问题已经相当大的主题讨论文学DeepikaYadav, r . Naresh诉Sharma给解决水力热力调度使用实时变量遗传算法在[10]可用方法不同系统建模假设和解决方案。一年一度的热液调度问题涉及到电力系统的年度运营成本最小化等式和不等式约束的几个由物理规律的系统和设备的评级。不同的方法已经被提出了这些问题的解决方案。基于拉格朗日乘数方法和梯度搜索技术在[9]寻找最经济实用条件下的水热发电计划已经有据可查的。Houzhong燕如[5]利用微积分的变异为短程调度问题和提出了众所周知的协调方程。在这方面,随机搜索算法和模拟退火(SA)、遗传算法(GA)[11],进化策略(ES)[6]和进化编程(EP)可能被证明是非常有效的解决高度非线性海关问题,因为他们不会将任何限制成本曲线的形状和其他非线性模型表示。虽然这些启发式方法并不总是保证全局最优的解决方案,他们将提供一个合理的解决方案(次优接近全局最优)在短CPU时间。 |
系统模型和假设 |
本文算法对遗传算法和差分进化方法用于寻找哪个方法更节约,因此成本决定。这里的系统模型被认为是由一个火力发电厂和一个水力发电站。结果做进一步的比较研究。 |
|
指定的负载的时间表 |
12 mid-night-12noon: 500 MW, 12 noon-12midnight: 900兆瓦 |
考虑€1 = 0.001€2 = 0.001, |
|
假设是, |
1。水的水库是假定常数在操作期间 |
2。水从水库一直被忽视的溢出 |
3所示。操作安排24小时,每间隔一小时 |
4所示。指定的开始和结束水存储卷 |
5。等式约束实物支付=此后+ Plossk负载需求 |
算法的方法 |
遗传算法 |
1。读取数据,即成本系数,ai, bi, ci, B-coefficients B (i = 1, 2, 3,…, NG;j = 1, 2、3、……NG),数量的步骤伽马校正(d),数代(z),步长α,水资源在时间间隔q l字符串,长度l人口规模,pc交叉概率、变异概率,下午的时间间隔(t)λmin和λmax间隔等。 |
2。生成一个随机数数组。生成人口λj (j = 1,2,…. . L)通过抛硬币的间隔。位设置根据抛硬币bij = 1如果p = 1或0 < = p否则bij = 0, p = 0.5。 |
3所示。生成初始种群的γ。 |
4所示。如果对伽马校正的迭代次数> = d然后转到其他24步重复步骤4 - 23所示。 |
5。如果间隔数< = t)重复步骤6 - 20为每个时间间隔和时间间隔计数器增量每次转到步骤4。 |
6。设置生成反k = 0, fmax = 0和fmin = 1。 |
7所示。如果k > = z GOTO顾不上其他重复步骤7 - 20 |
8。增加代计数器k = k + 1,人口反j = 0。 |
9。增加人口反j = + 1 |
|
11。使用高斯消去法的方法来找到πj (i = 1、2、……NG包括水力发电的和热发电机)。 |
12。计算传输损耗。 |
13。找出εj |
14。找出健身的健身价值函数f j = 1 /(1 +α*εj / Pd)。如果(fj > fmax)设置fmax = fj以及如果((fj < fmin)然后fmin = fj |
15。如果(j < L)然后转到第9步,重复。 |
16。发现人口最大的健康和健身的人口平均。 |
17所示。使用随机选择交叉的父母剩下的轮盘赌选择 |
18岁。执行单点交叉为选定的父母。 |
19所示。执行突变。 |
20.修改和创建新的人口λ为下一代。 |
21。检查是否可用的总水是足够的水力发电的一代在每个时间间隔。 |
22。在最初预期的γ值计算错误的人口。 |
23。修改的值γγ的人口和转到步骤4。 |
24。停止。 |
微分进化 |
1。问题变量表示为一个j-dimensional试验确定向量,其中每个向量是一个个体的人口演变。 |
2。父向量的初始种群Qk k = 1, 2,…Np的随机feasiblerange选择在每一个维度。这些父母向量的分布是均匀的。 |
3所示。生成一个子女从每个父母与采用基于扩展成本策略参数。 |
4所示。适应度函数评价为每个父母和孩子的数量。 |
5。竞争对手是随机选择从2 Np试探解的人口总和 |
6。在比赛结束后2 np试验解决方案排序根据他们的核心从最高到最低。 |
7所示。如果当前一代是大于或等于最大代打印结果和停止,否则重复步骤3到6。 |
8。如果审判的健身目标向量的向量比,试验向量替换目标向量的下一代 |
结果和讨论 |
热液使用遗传算法调度的结果 |
avgpowerhydal1 = 95.4213 |
avgpowerthermal1 = 254.9387 |
avgpowerhydal2 = 110.5212 |
avgpowerthermal2 = 592.1447 |
averageloss1 = 3.2459 |
averageloss2 = 15.7512 |
rupees1 = 3.45212 e + 003 |
rupees2 = 7.81254 e + 003 |
热液调度使用微分进化的结果 |
avgpowerhydal1 = 95.8512 |
avgpowerthermal1 = 254.7574 |
avgpowerhydal2 = 111.0452 |
avgpowerthermal2 = 591.1283 |
averageloss1 = 3.2339 |
averageloss2 = 15.7212 |
rupees1 = 3.44326 e + 003 |
rupees2 = 7.79885 e + 003 |
|
下面的表显示了Rs / hr -热发电的成本 |
|
从上面所示的结果,两种方法之间的对比很明显,两种方法都能够给代热植物的经济成本,但微分进化方法比遗传算法更有利的方法。微分进化方法显示更多的水力发电的发电在每个间隔比遗传算法。水力发电的核电站的运行成本很低所以它更节约使用微分进化与遗传算法相比。 |
结论 |
在结束语可以表示微分进化算法获得的结果是最好的比获得的遗传算法的解决方案。所以短期固定头热液调度考虑传输损耗可以通过微分进化算法以最小化火力发电厂的发电成本和遵循的约束。这个程序做一些假设是考虑如水头水电水库常数在操作过程中,水从水库已被忽视,溢出操作24小时安排在每个间隔一个小时,开始和结束水指定存储卷。 |
引用 |
- 木材。,WollenburgB.,”Power generation Operation and control”,New York:Wiley,1996
- D。P Kothari, J。“电力系统优化”年代Dhillon,φ学习私人有限新德里2011年
- lK Kirchmayer,“电力系统经济运行”,Johnwileyand儿子,纽约,N。Y 1958
- Houzhong燕,Peter b . LuhXiaohong关,Peter m罗根“热液电力系统调度”IEEE电力系统,vol8, 3号,1993年8月
- Houzhong燕,Peter b . LuhXiaohong关,Peter m罗根热液系统的“基于优化调度与抽水蓄能单元”IEEE电力系统,vol9, 2号,1994年5月
- Rainer Storn KennethPrice,“微分进化简单而高效的启发式全局优化在连续空间”杂志全球optimizationSpringer 11卷,pp341 - 359, 1997
- j . p . s . Catala y s . j . p . s . Mariano1 v . M . f . Mendes2和l·a·f·M。Ferreira3“非线性优化方法对短期水电调度考虑head-dependency“欧洲电力交易欧元。反式。电工实习。电力(2008)
- j . p . s . Catalao s . j·p·s·马里亚诺·v·m·f·门德斯和l·A·f·m·费雷拉”调度Head-Sensitive级联HydroSystems:非线性方法”,IEEE电力系统,24卷,第一,2009年
- 拉斐尔·n·罗德里格斯,埃德森·l·达席尔瓦Erlon c . Finardi和法布y . k . Takigawa“解决热液系统的短期调度问题通过拉格朗日松弛和增广拉格朗日”Hindawi出版公司2012年工程卷数学问题,文章ID 856178, 18页
- DeepikaYadav, r . Naresh诉沙玛,“短期固定头热液调度使用真实变量遗传算法”,Internationaljournal电工技术、vol3 september2012 pp430 - 443
- M.M. Salama, M.M. Elgazar、克里Abdelmaksoud H.A.亨利,“短期最优发电调度的固定头热液系统使用基于遗传Algorithmand收缩因子的粒子群优化技术”,vol3 Issue5, 2013
|