ISSN在线(2319 - 8753)打印(2347 - 6710)
C.Rajeshkannan1和G.Lakshmanan2
|
相关文章Pubmed,谷歌学者 |
访问更多的相关文章国际创新研究期刊》的研究在科学、工程和技术
这个模型是一个健壮的和非常广泛应用技术相结合的高敏感性和特异性的合适的化学成分。识别和定量的化学成分进行了GC / MS离子阱的内部和外部的标准。内部标准60000 NIST的参考化合物及其参考光谱模式库。本研究进行了量化的绿原酸(CGA)水和methanolic提取物的木苹果用气相色谱-质谱离子阱(A.marmelos)与外部标准。绿原酸是一种目标化合物,水溶性酚类化合物在生理功能中扮演重要的角色在人类植物和药理活性。绿原酸的总质量是354。它将从不同的识别和量化提取木材相比苹果与外部标准。保留时间的标准绿原酸水提物,methanolic提取和综合提取显示43.237,分别为43.236、43.234和43.241分钟。质谱数据的标准分散离子是311.3,312.3,325.3,354.2,355.0和这些离子是木苹果的所有样本中发现的。因此,定量的目标化合物对外部标准,其相似性之间的保留时间和质谱数据标准和样品将被用于识别和量化的目标化合物。 The targeted compound has been quantified as 41.9, 9.5 and 29.7 percent of aqueous extract of WA, methanolic extract of WA and combined extract of WA respectively. GCMS is a selective and sensitive analytical method to identify and quantify the target compound in chemical matrix with reference to internal and external standard of chemical constituents. Target component possess wide application of medicinal properties, especially in psychiatric disorders and this analysis might be used to know the exact concentration of target chemical components in the aqueous and methanolic fruit extract of A.marmelos (wood apple).
关键字 |
绿原酸、木苹果(WA)。marmelos、目标离子,抽搐和质谱数据。 |
介绍 |
酚酸的芳香族二次植物代谢产物广泛分布于植物界,这是与不同的生物功能,如蛋白质合成,酶活性也发挥重要作用在植物的自然宿主防御机制对传染病。肉桂酸和苯甲酸衍生物在物理上分散在整个植物,绿原酸是最常见的缩酚酸在植物。缩酚酸是分子间酯缩合形成的两个或两个以上相同或不同的酚酸分子(Wojciak-kosior Oniszczuk, 2008)。注册会计师是高等植物中广泛分布(Bradfield et al ., 1952;迪金森和百合科,1954),扮演重要的角色在某些植物的生理功能和药理功能的人类。注册会计师参与植物的防御行动(Kirc et al ., 1956;李和勒,1958;Uritani和Muramatsu表示1953;Uritani, 1953),抑制IAA氧化酶(Gortner和肯特,1958)和抗氧化性能,对慢性退化性疾病(这可能积极作用Daglia et al ., 2000;德尔Castilho et al ., 2002)。 Earlier researchers reported that CGA found to have potential bio-pharmacological importance in humans. A.marmelos commonly known as Bael belongs to Rutaceae Family is widely grown in India, Tropical and subtropical Countries. It possess great mythological and medicinal significance in ancient system of medicine. Many of the researchers reported the presence of number of chemical constituents in A.marmelos viz., γ-sitosterol, aegelin, lupeol, rutin, marmesinin, β-sitosterol, flavone, glycoside, O-isopentenyl halfordiol, marmeline and phenylethyl cinnamamides. Obviously, A.marmelos is a well known traditional medicinal plant in ancient medical system which is proved for its medicinal properties such as antidiabetic, antiulcer, antioxidant, antimalarial, anti-inflammatory, anticancer, radioprotective, antihyperlipidaemic, antifungal, antibacterial and antiviral activities. Enormous methods are available for the quantification of chemical constitutents of botanicals. Gas chromatography /mass spectrometry (GC/MS) has long been used as a method of choice for identifying chemical constituents in complex mixtures and it may fail when acquired spectra are contaminated with extraneous mass spectral peaks as commonly arising for co-eluting compounds, column beed and ion chamber contaminants. However, Stein 1999 reported that compound identification and quantitation has been made by the extraction of spectra from the total ion chromatograms (TIC) and the identification of target compound by the matching of full spectrum from available GC/MS data and trace amount of chemical constituents can also be identified by GC/MS. Therefore, the present study has been conducted for the quantitation of chlorogenic acid in different extracts of A.marmelos with external standard by GC/MS Ion trap. |
材料和方法 |
收集的样本 |
a . marmelos水果收集和验证Tamilnadu农业大学,哥印拜陀,Tamilnadu、印度。收集的样本处理和纸浆干在40ºC烤箱温度。然后干纸浆粒状或粉状通过使用实验室搅拌机。已筛粉在气密胶袋包装,储存在- 20ºC进行进一步分析。绿原酸(1、3、4、5-Tetrahydroxycyclohexanecarboxylic酸3 - (3,4 - dihydroxycinnamate), 3 - 3, 4-Dihydroxycinnamoyl奎尼酸)从西格玛奥德里奇获得定量的木苹果(A.marmelos)。 |
的提取方法 |
水果粉提取顺序从极地到非极性溶剂。100年通用汽车的果肉细粉在水中浸泡24小时其次是甲醇和提取过滤,水和有机滤液分别用喷雾干燥机和旋转蒸发器。水相是通过喷雾干燥机- - - - - -实验室天涯,孟买和有机相,多余的溶剂是通过旋转蒸发器和蒸馏浓缩有机提取干40ºC。 |
样品制备 |
50毫克的水溶液,有机和提取的。marmelos水果是溶解在20毫升的解决方案(甲醇:苯:场骗局硫酸)的比率10:11:1和保存在水浴30分钟。2毫升的正己烷添加其次是增加10%碳酸氢钠后2分钟。然后转入分液漏斗,动摇了分离。有机层独立收集而丢弃层底部。明确的解决方案被通过C18 spe准备注入墨盒(美国瓦里安公司)。 |
气相色谱和质谱(GC / MS) |
在GC / MS分析物通常derivatized之前分析,以减少他们的极性,促进有效的色谱分离。它提供了一个详细的化学调剖的样本和顺向的测量相对或绝对数量的组件。组件的数量将取决于测量色谱系统的分辨率和检测技术的特异性。质谱仪中是一个非常具体的色谱检测器。获得电子电离质谱是可再生的,适合库匹配,质量光谱在NIST现成的库集合。目标化合物的检测已经完成,通过气相色谱分离后MS / MS操作首先选择目标离子(s)的选择在一个特定的质量在MS / MS的第一阶段,而分离的离子化学背景或矩阵。这些选择前体离子或父离子诱导通过碰撞与氦分子进一步分离。合成离子光谱提供了独特的产品确认的目标分析物。这种选择性的增加MS / MS也导致一个增强的信号噪声比;从而在一定程度上下限检测的实现。 GC/MS/MS provides unequivocal identification in cases where GC/MS spectra of compounds are difficult to interpret. Thus, even if the matrix contains another compound with the same mass as the parent ion for the analyte of interest, it is extremely unlikely that the interfering ion would yield the same daughter ion spectra as the analyte, thus GC/MS/MS is more specific for an ignitable liquid. In order to overcome the pyrolysis product interference and improved detection levels, MS/MS can be utilized as the method of detection. The parent ions and daughter ions are isolated and the MS/MS chromatograms for a variety of hydrocarbon distillates are obtained and subsequently compared to ignitable liquid standards, run under identical conditions. Robert and Eugene (2004) reported that the technique allows the analysis of only one component in the sample. Peak size is plotted against absolute amount of each component or its concentration in the matrix. Techniques of external standardization entail the preparation of standards at the same levels of concentration as the unknown in the same matrix with the known. These standards are then run chromatographically under ideal conditions as the sample. A direct relationship between the peak size and composition of the target component is established and the unknown is either extrapolated graphically or mathematically. |
GC / M /短信的操作条件 |
GCMS分析使用瓦里安进行了气相色谱法(3800系列)配备火焰离子化检测器和瓦里安1079系列喷射器配备力量CP 8410自动取样器,transferline女士290ºC的温度。GC是配备了熔融石英毛细管柱VF-5ms (30 x 0.25毫米)。烤箱温度举行60ºC 5分钟时间,然后提出160ºC和290ºC的速度5ºC /分钟和10分别ºC /分钟。载气是氦以恒定流量1毫升/分钟。质谱仪的操作全部40 - 550 m / z扫描模式。1μl样本注入的分流比1:20,女士(瓦里安4000系列)分析进行了瓦里安NIST质谱计配备图书馆数据库软件。 |
结果和讨论 |
Nakatani, et al .,(2000)报道,识别和定量三个绿原酸李子水果通过高效液相色谱法。GC保留参数尤为重要。从保留时间随列长度、固定相的类型和温度,比较合适的参数包括相对保留时间和保留指数(RI)。相对保留时间仅仅是分析物的比率乘以时间的选择标准化合物。大多数制造商的数据系统不处理RI值。然而,自动化的质量谱反褶积和识别系统(AMDIS)(斯坦,1999)从国家标准与技术研究所(NIST)具有良好的国际扶轮能力和是现成的(http:// chemdata.nist.gov / mass-spc / AMDIS /)。软件可以阅读大多数制造商的数据文件和执行质量光谱反褶积来“清理”前质谱库检索(www.hdscience.com)。AMDIS软件已应用于植物(Fiehn, 2003)。质谱数据系统通常为目标化合物分析的装备,在预选的组件可以被它们的质量谱模式或模式限定符离子(John et al ., 2005)。GC / MS / MS是高度敏感的67年定量,常见的主要代谢物大部分属于氨基酸组和nonamino有机酸(Kvitvang et al ., 2011)。 Similarly, the identification and quantitation of chlorogenic acid from aqueous and organic extract of A.marmelos has been done with reference to external standard. GC/MS chromatogram (i) Standard of target compound (Chlorogenic acid) (ii) A. marmelos fruit aqueous extract (iii) A. marmelos fruit methanolic extract and (iv) A. marmelos fruit combined extract was depicted in the Figure 1. Figure 2 represents the peak of the target compound that has been extracted from the total ions of chromatogram (TIC) based on its total mass. The retention times for selected ions in TIC are absolutely similar and length of the peak in X-axis indicates that 0.00 to 0.07 which are depicted in the Figure 3 and Table 1. Mass spectral pattern of target ion in samples and standard has been compared and the fragmented ions were depicted in the Table 2 and Figure 4. |
识别和量化的不同提取的绿原酸。marmelos描述在表1和表2代表目标离子的质量数据总离子色谱图(TIC)。绝对相似的保留时间和分散离子质谱数据用于比较样品与参考外部标准化合物。图5显示354.3离子抽搐和选择离子已经在100年的百分比量化,41.9,9.5,29.7标准,分别为水、甲醇和综合提取。 |
打(1992、1997)报道,各种化学成分的qnantitation像di (2-ethylhexyl)邻苯二甲酸酯增塑剂是众所周知的污染物和丁基2-methylbenzoate等等,是识别和量化的基础上保留时间和它的质量谱数据。同样的研究已经进行了识别目标化合物绿原酸。大规模光谱数据中提取峰值在Table.2描述标准和样品之间的比较。的总质量所需的化合物已进入从抽搐中提取目标化合物的。选择离子及其分散离子监测之间的范围300 - 400 m / z值。质量光谱数据是在标准和样本,展品311年,312年,325年,354年和355年质量/电荷比率(m / z)在标准绿原酸和类似的m / z值存在于水,methanolic并结合提取木苹果 |
结论 |
目前的研究方法用于提取目标离子的总离子色谱图(TIC)和用于识别和定量化学成分,参照外部标准在GC / MS离子陷阱。外部标准分析了理想的条件,因为它将被用于样品和标准的比较。选中的大规模样本和标准给出了相似的保留时间和质谱数据。发明以来,全球大气环流模型扮演了至关重要的作用在结构上说明,识别和定量与参考光谱NIST已经完成,实现这一目标进行了一些衍生化,因此这项技术可能是昂贵的。因此,本方法可用于已知化合物的识别和定量从未知样本与外部标准。为了识别和量化有针对性的化学成分,采用方法将连续的结果,它是高度特异、敏感。这种技术可能有助于识别和量化的目标化合物和适用于进一步分析。 |
引用 |
|