所有提交的EM系统将被重定向到网上投稿系统.作者被要求将文章直接提交给网上投稿系统各自的日志。

基于可信计算机策略的云计算安全研究

K.Deepika1,纳文·普拉萨德2, Prof.S.Balamurugan3., S.Charanyaa4
  1. 印度泰米尔纳德邦哥印拜陀,Kalaignar Karunanidhi理工学院IT系
  2. 高级软件工程师大型机技术前,Larsen & Tubro (L&T)信息技术,金奈,泰米尔纳德邦,印度
有关文章载于Pubmed谷歌学者

更多相关文章请访问国际计算机与通信工程创新研究杂志

摘要

本文回顾了从2009年雷竞技苹果下载到2010年为匿名数据开发的方法。为广泛研究和其他目的发布人口普查或患者数据等微观数据是政府机构和其他社会协会关注的一个重要问题领域。通过文献调查发现,传统的方法从微数据中剔除社保号等唯一标识字段,但仍然会导致敏感数据的泄露,k-匿名优化算法在某些情况下似乎是有前景和强大的,但仍然存在优化的k-匿名是np难的限制,从而导致严重的计算挑战。k-匿名面临着同质性攻击和背景知识攻击的问题。为了解决这个问题,文献中提出的ldiversity概念也提出了一些约束,因为它被证明是低效的,无法防止属性泄露(偏度攻击和相似攻击),l-多样性难以实现,并且可能无法对跨等价类的敏感属性提供足够的隐私保护,可以大大改善信息披露限制技术(如采样单元抑制舍入和数据交换和扰动)的隐私。本文旨在讨论一种高效的匿名化方法,该方法需要划分微数据等价类,通过核平滑最小化接近度,通过控制敏感属性在微数据中的分布模式并保持多样性来确定以太移动距离。

关键字

数据匿名化,微数据,k匿名,身份披露,属性披露,多样性

介绍

近年来,向公众公布敏感数据的需求急剧增长。虽然发布有其必要性,但发布的社交网络数据不能泄露个人隐私是有限制的。因此,保护个人隐私和确保社交网络数据的效用成为一个具有挑战性和有趣的研究课题。考虑一个图形模型[35],其中顶点表示敏感标签,可以开发算法来发布非表格数据,而不损害个人隐私。虽然KDLD序列生成[35]后的数据是用图形模型表示的,但数据容易受到同质性攻击、背景知识攻击、相似性攻击等多种攻击。本文对文献中常见的攻击和可能的解决方法进行了研究,并对其有效性进行了分析。

eucalyptus开源云计算系统[2009]

Daniel nurmi, Rich wolski, Chris grzegorczyk, Graziano obertelli, sunil soman, lamia youseff, Dmitrii zagorodnov通常,云计算系统从根本上通过各种接口提供对大量数据和计算资源的访问。这些接口类似于现有的网格和高性能计算资源管理和编程系统。今天,大多数云计算系统都完全依赖于基础设施。这种基础设施对研究团体来说是不可见的。在本文中,作者介绍了EUCALYPTUS,这是一个用于云计算的开源软件框架。这个开源软件框架实现了基础设施即服务(IaaS)。EUCALYPTUS系统的体系结构简单,灵活,模块化,具有层次设计,反映了在许多学术环境中发现的公共资源环境。作者描述了组成EUCALYPTUS安装的四个高级组件,每个组件都有自己的web服务接口。它包括节点控制器、集群控制器、存储控制器和云控制器。节点控制器在指定用于托管虚拟机实例的每个节点上执行。每个节点控制器都进行查询,以发现节点的物理资源,如核数、内存大小、可用磁盘空间,还可以了解节点上虚拟机实例的状态。 And next the author says that clster node generally executes on a cluster front end machine, or any machine that has network connectivity to both the nodes running NC’s and to the machine running the cloud controller. Many of the cloud controller operations are similar to the NC’s operations but are generally plural instead of singular(eg: run instances,terminate instances). Basically the cloud controller calculates how many simultaneous instances of the specific “type” can execute on its collection of NC’s and reports that number back to the CLC. VM instance interconnectivity is one of the most interesting challenges in the design of cloud computing infrastructure. While designing EUCALYPTUS, the authors recognized that the VM instance network solution must address connectivity isolation ad performance. This EUCALYPTUS design attempts to maintain inter-VM network performance as close to native as possible.
在EUCALYPTUS中,CC目前处理这三种模式。第一个配置指示系统将虚拟机的接口直接连接到连接到实际物理机网络的软件以太网网桥。第二个配置允许管理员定义静态媒体访问控制(MAC)和IP地址元组。在这种模式下,系统创建的每个新实例都会被分配一个空闲的MAC/IP元组,该元组在实例终止时被释放。在这些模式下,当虚拟机运行在同一集群上,但不存在虚拟机间网络隔离时,虚拟机间通信的性能接近本机。最后,这项工作旨在说明这样一个事实,即EUCALYPTUS系统通过提供一个易于部署顶级现有资源的系统填补了云计算设计领域的重要利基,它通过模块化和开源实现了自身的实验,并通过兼容接口提供了强大的开箱即用功能。作者提供了他们成功地在从一台笔记本电脑到小型linux集群的资源上部署了完整的系统。此外,他们还为所有希望在不安装任何软件的情况下试用该系统的人提供了安装。在此,他们总结到目前为止他们的经验是非常积极的,使我们得出这样的结论:EUCALYPTUS正在帮助研究社区提供一个非常需要的开源软件框架,围绕这个框架可以开发云计算研究人员的用户基础。

基于可信计算技术的云计算系统安全性(2010)

一般来说,基础网络需要安全性来实现信息的认证传输。云计算为人们提供了共享属于不同组织或站点的分布式资源和服务的方法。随着分布式系统和网络计算的广泛应用,安全问题已经成为一个紧迫的问题,在未来将变得更加重要。为了提高工作效率,将不同的业务分布在不同的服务器上,而服务器又分布在不同的地方。来自多个环境的用户都希望能够更高效地使用分布式计算,就像使用电力一样。那么,云计算就成为了一种新的信息需求。云计算提供了一种能够在分散拥有和管理的资源之间进行大规模受控共享和互操作的设施。作者指出,因此安全性是任何云计算基础设施中的一个主要元素,因为必须确保只允许授权访问,并且接受安全行为。由于云计算是由不同的本地系统组成,包含了来自多个环境的成员,因此云中的安全问题比较复杂。一方面,安全机制应该为用户提供足够安全的保证,另一方面,安全机制不应该过于复杂,使用户陷入不方便的境地。提出了一种新的方法,有利于提高云计算的安全性和可靠性。在设计中,作者将基于可信平台模块(TPM)的可信计算平台(TCP)集成到云计算系统中。TCP协议将用于云计算环境下的认证、保密和完整性。TCP可以提高云计算的安全性,不会给用户带来太大的复杂性。 Because the TCP is based on relatively independent hardware modules, it does not cost too much resource of CPU, and can improve the performance of processing cryptographic computation. The authors also designed a software middleware, the Trusted Platform Support Service (TSS), on which the cloud computing application can use easily the security function of TPM.The authors then discussed about the security model of the cloud computing. In order to achieve security in cloud computing system, some technologies have been used to build the security mechanism for cloud computing. The cloud computing security can be provided as security services. Security messages and secured messages can be transported, understood, and manipulated by standard Web services tools and software. The authors noted that this mechanism is a good choice because the web service technology has been well established in the network-computing environment.The CLOUD includes distributed users and resource
来自具有不同安全策略的分布式本地系统或组织。基于这个原因,如何在他们之间建立一个合适的关系是一个挑战。实际上,云计算环境对安全的要求是多方面的,包括保密性。多重安全策略,服务动态。,the trust among the entities, dynamically building trust domains.The authors proposed the mechanism of trusted computing platform and other related functions that aid to achieve the trusted cloud computing, which has a trusted computing environment.The word trust is defined as “A trusted component, operation, or process is one whose behavior is predictable under almost any operating condition and which is highly resistant to subversion by application software, viruses, and a given level of physical interference.” Then the authors concentrated on the trusted computing platform.TCP operates through a combination of software and hardware: manufacturers add some new hardware to each computer to support TC functions, and then a special TC(trusted computing) operating system mediates betweenthe hardware and any TC-enabled applications. TCP provides two basic services, authenticated boot and encryption, which are designed to work together. An authenticated boot service monitors what operating system software is booted on the computer and gives applications a sure way to tell which operating system is running. It does this by adding hardware that keeps a kind of audit log of the boot process.The authors keynoted that the build trusted cloud computing system using TCP.The trusted computing mechanism can provide a way that can help to establish a security environment. The model of trusted computing is originally designed to provide the privacy and trust in the personal platform and the trusted computing platform is the base of the trusted computing. Since the internet computing or network computing has been the main computing from the end of the last century, the model of trusted computing is being developed to the network computing, especially the distributed systems environment. The cloud computing is a promising distributed system model and will act as an important role in the e-business or research environments.The authors specified the Authentication cloud computing environment in TCP.In cloud computing environment, different entities can appeal to join the CLOUD. Then the first step is to prove their identities to the cloud computing system administration. Because cloud computing should involve a large amount of entities, such as users and resources from different sources, the authentication is important and complicated. Considering these, we use the TCP to aid to process the authentication in cloud computing. Then the authors were dealt about the Role based access control model in cloud computing environment. In order to reach the goal of trusted computing, the users should come from the trusted computing platform, and take the security mechanism on this platform to achieve the privacy and security for themselves. The user has his personal ID and secret key, such as the USB Key, to get the right to use the TCP. They can use the decryption function to protect their data and other information.
作者描述了通过使用远程验证功能,TCP中的用户可以将他们的身份和相关信息通知给他们想要访问的远程机器。分析了云计算环境下的可信计算以及可信计算平台在云计算中的作用。他们提出的方法的优点是将可信计算技术扩展到云计算环境中,实现对云计算的可信计算需求,进而实现可信云计算。采用TCP协议作为云计算系统的硬件基础。TCP在其设计中为云计算系统提供了一些重要的安全功能,如身份验证、通信安全和数据保护。本文还提出了相应的实现方法。

结论及未来工作

讨论了从2009年到2010年为匿名数据开发的各种方法。为广泛研究和其他目的发布人口普查或患者数据等微观数据是政府机构和其他社会协会关注的一个重要问题领域。通过文献调查发现,传统的方法从微数据中剔除社保号等唯一标识字段,但仍然会导致敏感数据的泄露,k-匿名优化算法在某些情况下似乎是有前景和强大的,但仍然存在优化的k-匿名是np难的限制,从而导致严重的计算挑战。k-匿名面临着同质性攻击和背景知识攻击的问题。为了解决这个问题,文献中提出的ldiversity概念也提出了一些约束,因为它被证明是低效的,无法防止属性泄露(偏度攻击和相似攻击),l-多样性难以实现,并且可能无法对跨等价类的敏感属性提供足够的隐私保护,可以大大改善信息披露限制技术(如采样单元抑制舍入和数据交换和扰动)的隐私。详细讨论了数据匿名化技术和数据泄露防范技术的发展。介绍了数据匿名化技术在弹道数据等几种频谱数据中的应用。这项调查将促进数据库匿名化领域的许多研究方向。

参考文献

  1. Pieter Van Gorp和Marco Comuzzi“通过云中的虚拟机实现终身个人健康数据和应用软件”IEEE生物医学和医疗信息学杂志,第18卷,第1期,2014年1月
  2. Sape J. Mullender, Andrew S.Tanenbaum,“分布式操作系统中的保护和资源控制”,1984。
  3. Paul J.Levine,“通过电话线访问的分时计算机的计算机安全系统US 4531023 a, 1985
  4. John G.Campbell,Carl F.Schoeneberger,“远程中心电视和安全系统”,美国4574305 A, 1986。
  5. A Pfitzmann,“没有用户可观察性的网络”,计算机与安全6/2 (1987)158- 166,1987
  6. TF Lunt,“自动审计跟踪分析和入侵检测:一个调查”,第11届全国安全会议论文集,1988
  7. 利希滕斯坦埃里克斯蒂芬1984 a,计算机控制医疗保健系统US4464172。
  8. robert a . Miller, 1985,微机在发展中国家卫生研究的介绍。
  9. Steven P.Brown 1986,综合医疗数据、身份识别和健康保险卡。
  10. Peter P. Gombrich, Richard J. Beard, Richard A. Griffee, Thomas R. Wilson, Ronald E. Zook, Max S. Hendrickson 1989,病人护理系统,US4835372 A。
  11. 郭沙,“语音网络安全系统”,美国国立大学学报,1989
  12. D Graft,“网络安全设计的方法学”,IEEE计算机学报,1990
  13. Heberlein,“网络安全监测,1991
  14. John R. Corbin,“在计算机网络上授权软件的设备和方法US 5138712a”,1992年
  15. S Gordon,“计算机网络滥用”,1993。
  16. Neil Bodick, Andre L. Marquis1990,用于创建和编辑知识库的交互式系统和方法,用于诊断认知过程的计算机辅助,US4945476。
  17. Angela M. Garcia,博士,Boca Raton 1991 a,调度和报告患者相关服务的系统和方法,包括优先级服务,US5974389 a。
  18. 克拉克·梅勒妮·安,约翰·芬利,赫斯卡;迈克尔·爱德华,卡贝尔;杰弗里·哈罗德,格雷厄姆,马克·梅里尔,1991 b,安排和报告患者相关服务的系统和方法。
  19. Robert W. Kukla1992,病人护理通信系统,US5101476 A
  20. Mark C. Sorensen 1993,计算机辅助医疗诊断方法和设备,US5255187。
  21. Edward J. Whalen,圣拉蒙,橄榄大道皮埃蒙特1994,管理医疗记录的计算机化文件维护系统,包括叙述专利文件报告。
  22. Desmond D. Cummings 1994b,所有护理健康管理系统,US5301105 A。
  23. 伍德罗·b·凯斯勒雷克斯·K·凯斯勒1994 c,用于跟踪和评估医疗的医疗数据草案。
  24. Joseph P. Tallman, Elizabeth M. Snowden, Barry W. Wolcott 1995,医疗网络管理系统和过程,US5471382 A。
  25. Peter S. Stutman, J. Mark Miller 1996,具有选择性过滤医疗信息的医疗警报分发系统
  26. Edwin C. Iliff1997,计算机化医疗诊断系统,包括再输入功能和敏感性因素,US5594638 A。
  27. Timothy Joseph Graettinger, Paul Alton DuBose 1998,基于计算机的神经网络系统和医学诊断和解释方法。US5839438。
  28. Melanie Ann Clark, John Finley Gold, Michael Edward Huska, Geoffrey Harold Kabel, Marc Merrill Graham1999,医疗记录管理系统和改进的工作流程功能,US5974389。
  29. Richard S. Surwit, Lyle M. Allen, III, Sandra E. Cummings 2000 a,用于远程监控、诊断和治疗患者病情的系统、方法和计算机程序产品,US6024699 a。
  30. Jeffrey J. Clawson 2000 b,为窒息患者提供远程紧急医疗咨询的方法和系统,US6010451 A。
  31. Marc Edward Chicorel 2001,通过基于编码诊断的语言US6192345 B1,计算机键盘生成的医疗进度记录。
  32. Charlyn Jordan2002,异常状况的健康分析和预测。
  33. Jeffrey J. Clawson2003,用于改进紧急医疗调度系统的输入过程的方法和系统
  34. PekkaRuotsalainen 2004,安全电子健康记录通信的跨平台模型。
  35. Roger J. Quy2005,结合无线互联网连接的患者数据监测的健康和疾病管理方法和设备,US6936007 B2。
  36. Avner Amir, Avner Man2006 a,在线医疗管理系统和方法,WO2006006176 A2。
  37. Paul C.Tang, Joan S. Ash, David W. Bates, J. Marc overhage和Daniel Z.Sands 2006 b,个人健康记录:定义、好处和克服收养障碍的策略。
  38. Christopher Alban, KhiangSeow2007,多护理人员使用的临床文件系统。
  39. Ian Foster,赵勇,Ioan Raicu,陆世勇,“云计算和网格计算360度比较”,[2008a]
  40. Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,“面向市场的云计算:作为计算公用事业提供IT服务的愿景、类型和现实”[2008(b)]
  41. Ronald Perez, Leendert Van Doom, Reiner Sailer,“基于虚拟化和硬件的安全”[2008(c)]。
  42. Daniel nurmi, Rich wolski, Chris grzegorczyk, Graziano obertelli, sunil soman, lamia youseff, Dmitrii zagorodnov,“Eucalyptus开源云计算系统”[2009]
  43. 沈志东,童强,“基于可信计算技术的云计算系统安全性”[2010]
  44. Farhan Bashir Shaikh, Sajjad Haider,“云计算中的安全威胁”(2011)
  45. Sanjana Sharma, Sonika Soni, Swati Sengar,“云计算中的安全”(2012)
  46. b .波梅亚,尼基塔·玛丽·阿布莱特,v .莫哈那普利亚,S。Balamurugan,“安全医疗数据库系统建模的面向对象方法”,与IETE学生论坛和数字信息和无线通信协会联合的计算机、通信和信号处理国际会议(IC3SP),SDIWC,2011年,第2-3页
  47. Balamurugan Shanmugam, Visalakshi Palaniswami,“基于全功能依赖的微数据发布隐私保护的改进分区算法”,《应用科学》,2013年7月,第7期,pp.316-323
  48. Balamurugan Shanmugam, Visalakshi Palaniswami, R.Santhya, R.S.Venkatesh“功能相关敏感数据的隐私保护策略:一项最新调查”,澳大利亚基础与应用科学杂志,2014年9月8日(15)。
  49. S.Balamurugan, P.Visalakshi, v.m.p abhakaran, s.c ranyaa, S.Sankaranarayanan,“云计算环境中NP-Hard工作流调度问题的解决策略”,《澳大利亚基础与应用科学杂志》,2014年10月8日,第15期。
  50. Charanyaa, S等,,基于图的数据匿名化中的攻击预防和处理策略调查。计算机与通信工程学报,2013,29(3):379 - 379。
  51. Charanyaa, S.等人,数据匿名化中保护图隐私方法的某些研究。计算机与通信工程学报,2013,26(3):357 - 357。
  52. Charanyaa, S.等人提出了一种新的协同k度l -多样性t -紧密度模型,用于基于图的数据匿名化。计算机与通信工程学报,2014,29(3):344 - 344。
  53. 图形数据匿名化中基于知识的攻击检测策略。。计算机与通信工程学报,2014,29(2):344 - 344。
  54. 夏兰杰,陈晓明,等。基于词频的数据匿名化序列生成算法。计算机与通信工程学报,2(2):3033-3040,2014。
  55. V.M.Prabhakaran,教授。Balamurugan, s.c aranyaa,“云医疗数据保护策略的若干研究”,《国际计算机与通信工程创新研究杂志》第2卷,第10期,2014年10月
  56. V.M.Prabhakaran,教授。Balamurugan, s.c aranyaa,“远程虚拟机安全终身PHR的研究”,国际计算机与通信工程创新研究杂志第2卷,第10期,2014年10月
  57. V.M.Prabhakaran,教授。Balamurugan, s.c aranyaa,“在云端保护个人医疗保健数据的隐私”,《国际科学、工程与技术高级研究杂志》第1卷,第2期,2014年10月
  58. P.Andrew, J.Anish Kumar, R.Santhya,教授s。刘志刚,“移动数据对象隐私保护策略的演化研究”,《计算机与通信工程》,2(2):3033-3040,2014。
  59. P.Andrew, J.Anish Kumar, R.Santhya,教授s。刘志刚,“移动数据对象安全的若干研究”,计算机与通信工程,2(2):3033-3040,2014。
  60. P.Andrew, J.Anish Kumar, R.Santhya,教授s。Balamurugan, s.c aranyaa,“保护数据对象隐私的方法研究”,《科学、工程和技术国际高级研究杂志》第1卷,第2期,2014年10月
  61. S.Jeevitha, R.Santhya,教授s。Balamurugan, s.c aranyaa,“在云计算中保护个人医疗保健数据的隐私”国际科学、工程和技术高级研究杂志第1卷,第2期,2014年10月。
  62. K.Deepika, P.Andrew, R.Santhya, S.Balamurugan, S.Charanyaa,“敏感数据保护方法的研究”,《国际先进科学研究杂志》第1卷,第4期,2014年12月。
  63. K.Deepika, P.Andrew, R.Santhya, S.Balamurugan, S.Charanyaa,“数据匿名化方法的调查”,《国际科学、工程与技术高级研究杂志》第1卷,第4期,2014年12月。
  64. S.Balamurugan, S.Charanyaa,“社交网络数据安全原理”,德国,ISBN: 978-3-659-61207- 7,2014
  65. S.Balamurugan, S.Charanyaa,《云计算调度原理》,学者出版社,德国,ISBN: 978-3-639-66950- 3,2014
  66. S.Balamurugan, S.Charanyaa,《数据库安全原理》,学者出版社,德国,ISBN: 978-3-639-76030- 9,2014
全球科技峰会