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INTRODUCTION
Intermittency mechanism transitionally occurs between laminar and chaotic zone as a specific configuration of the ergodic 

dynamical system. Intermittency concept first was introduced by Pomeau and Manneville when Floquet multipliers of the local 
Poincaré map associated with the Lorenz system traverses the unit circle [1]. A Lorentz system can show chaotic burst at irregular 
zones by a small change in a control parameter when is in regular behavior [2]. There are various types of intermittencies such as 
Type-I, II, III [1], X [3], V [4-6], on-off [7,8], eyelet [9,10], spatiotemporal [11], Crisis-induced [11], and ring [12] have been classified chiefly by the 
local Poincare map [13]. As we Know, in vicinity a tangent bifurcation, a subcritical Hopf bifurcation and an inverse period doubling 
bifurcation occur Type-I, II, III intermittency when the Floquet multiplier for the local Poincaré map traverses the circle of unitary 
norm in the complex plane through +1, two complex eigenvalues of Floquet matrix cross the unitary circle off the real axis, and 
Floquet multiplier is 1, respectively [14]. Type-III intermittency appears in phenomenological processes such as electronic nonlinear 
devices, lasers, biological tissues and etc [15-18]. Describing the dynamics of intermittency using networks language is our aim in 
this work. Here, we focus on the study of type-III intermittency based on the complex network extracted from time series of the 
type-III intermittency. The Markov binary visibility graph is a complex network which is designed based on a Markov chain. It can 
be optimized by binary block design method to study of behavior and phases of the type-III intermittency which can call it Markov 
Binary Block Visibility Graph (MBBVG) [19,20]. In the other words, we transform fluctuations of the time series of type-III intermittency 
into two-state Markov chain using binary block design and then based on the Markov binary visibility graph, the MBBVG map the 
two-state Markov chain into complex networks. The binary block design is a subcategory of the block design in combinatorial 
mathematics which has many applications in sciences such as experimental design [21,22], finite geometry [23], software testing 
[24], cryptography [25,26], and algebraic geometry [27]. Results of the MBBVG will show the capability of it for analyzing the fluctuated 
properties of the type-III intermittency. This paper is ordered as we study the fluctuated properties of Type-III intermittency in 
section 2. Then, we study the binary block design in order to use in the construction of the Markov binary visibility graph in 
section 3. Next, we illustrate the perspective of Markov binary visibility graph that can be used to fluctuation analysis of type-III 
intermittency in section 4 and finally, in Section 5, we conclude this work.

TYPE-III INTERMITTENCY
The first time, Type-III intermittency was discussed by Pomeau and Manneville [1] in association with the Lorenz model 

and was observed by Dubois [28] in the Bénard convection of a rectangular cell. For simulation of type-III intermittency by a one 
dimensional local Poincare map g(x), the Schwartzian derivative Sg(x) must be positive at the critical point [29], that is 
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Here, we propose a local Poincare map with the positive Schwartzian derivative for the illustrative model such
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that we consider λ>0, z=15 and U(x) as a self-map such as a sin(x) so that the system is unstable for 0<ϵ≪1 in x=0. Also, 
equation (2) can be simplified to
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in the vicinity x=0 as a local Poincare map for type-III intermittency systems [30]. The non-linear term ( )
( )'

z
n

n

U x
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reinjection mechanism to be investigated in type-III intermittency. In our simulation, use of a self-map such as a sin(x) in the 
structure of the proposed local Poincare map allows an efficient reinjection mechanism to occur in the intermittency. To consider 
ϵ=10-2 and sin(x) as the self-map, extremum points in the exponential trajectory of the map are as xm= ± 1.0582.

Figure 1. The one-iterated map of the equation (2) based on Un(x) with control parameters ϵ=10-2, λ=1, and η=6.3.

Figure 1 shows the extremum points of the map that affect the reinjection mechanism. The behavior of the periodic-
exponential trajectories is typically as laminar with a long length of n iterations in between reinjected points (x0=0) close to the 
unstable fixed point (Figure 2). If the rejected points (x0≪1) are far from the unstable fixed point, the behavior of the periodic-
exponential trajectories is chaotic burst as short laminar with the length of n iterations.

Figure 2. The periodic-exponential trajectories of equation (2) for ϵ=10-2, λ=1, and η=6 based on n iterations.

To consider ϵ=10-2 and λ=1, the bifurcation diagram of the map (2) shows that no reinjection emerges nearby the fixed point 
for η>ηδ ≃ 6.32 (Figure 3).
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Figure 3. Bifurcation diagram for the equation (2) with ϵ=10-2 and λ=1.

We focus on the study of the property of type-III intermittency systems. The average laminar length of laminar zones is one 
of the characteristic relations of type-III intermittency which is typically proportional to the inverse of the value of the distance 
between the dynamical system and inverse period doubling bifurcation, i.e. 〈l〉 ∝ ϵ-1. To investigate the topic, the equation (2) with 
λ=1 can be approximated in the laminar zone by the following differential equation
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that the number of interactions between reinjections (n) is computed as follows
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where the δ is the upper limit for the laminar region. In result, the equation of the n is as following
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where a can be equal to 0.87.

 
Figure 4. A semi-log plot of a number of interactions between reinjections (solid circles) for the approximation of the equation (2) with ϵ=10-2 

and the trajectory of length N=106. The lines are theoretical predictions based on relations of Equation (6).

As we know, the reinjection probability density (RPD) ψ(|x|) determines the statistical behavior of the intermittency 
phenomenon [31]. Because the RPD cannot be simply measured by the numerical data, we can use from centroid equation of the 
RPD in order to compute the RPD which is as following
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here, x∈[0,δ] and the δ is the upper bound for the local regular [32]. If we consider the lower bound of the reinjection is slightly 
greater than zero (xi>0 and xi ≈ 0), the M(x) can be numerically approximated in a linear form as [32]

( ) iM x mx x= +
 											                                         (8)

In result, the RPD can be obtained as follows [33]
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The b with regard to the symmetric property of the RPD is determined by the normalization condition as
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that to consider κ>-1 (0<m<1), the equation (10) is solvable and the b is as [32] :

( ) ( ) ( ) 1
1

1
2 12

m
m

i
i

mb x
mx κ

κ δ
δ

−
+

+
= = −

−−
 								                                     (11)

Now, if we consider the lower bound of the reinjection is slightly smaller than zero (xi<0 and xi ≈ 0) and due to the symmetry 
of the equation, the RPD must be also symmetric [30]. The RPD can be obtained by two overlapping functions, each one having the 
form given by equation (8) as follows [30]
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The b is again determined by the normalization condition and as follows
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that to consider κ>-1, the b is as
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In result, it can be obtained as [30]
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A duration probability density of the local regular φ(n) is related to the RPD and because of the symmetry of the equation (2), 
it can be as ψ(|x|)=2ψ(x) for x>0 [30,33] then,
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where the function X(n) is the inverse function of n(X) and for relations of equation (6) is as following
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Numerical results obtained from equation (2) with ϵ=10-2 show the reinjection is periodically uniform in interval (0,δ] so that 
the interval can be divided into distinct intervals as (0,|xi|) and [|xi|,δ] that values of the m are approximately equal to 0.5 and 
0.43, respectively. Also, the values of the xi and the δ are equal to 0.0117 and 0.9375, respectively (Figure 5).

 
Figure 5. A numerical simulations plot of the centroid equation of the RPD of versus rejected points for equation (2) with ϵ=10-2 and the 

trajectory of length N=106. (Insert upper panel) The part of the plot which is located between 0 and 0.05.

The RPD can be obtained for ϵ=10-2as follows
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where r is an approximation coefficient. According to the above mention and equation (16), we can obtain the duration 
probability density φ(n) as following (Figure 6)

( ) ( )( ) ( )( )( ) ( )
( )

33  2 2 22

1 2 3 12

12

1 1

n n

n

e e
n X n X n

a e

ρ ρ
ϕ ψ ψ ψ

ρ

−

−

−
= + +

− −

ò ò

ò

ò

ò
 					                                (19)

where ρ is equal to ( )21
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ò . Note that we can approximate behaviors of the duration probability density φ(n) based on a 

characteristic iteration scale nm [34] in little iterations n≪nm and much iterations n≫nm. For equation (19), we obtain a quadratic 
behavior in little iterations and an exponential behavior in many iterations as
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Now, we can compute the average number of interactions 〈n〉 as characteristic relations based on the above equations using 
the following equation [34]
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We obtain the average number of iterations 〈n〉 as
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As we can see, the characteristic relation 〈n〉∝ϵ-1/2

Figure 6. Logarithmic plots of the duration probability density φ(n) of interactions between reinjections for equation (2) with ϵ=10-2 and the 
trajectory of length N=106 based on different η: (a) η=6,(b) η=ηδ, and (c) η=6.5. The lines are theoretical predictions based on equation (19) 

with different approximation coefficients: (a) r=23, (b) r=2-1, and (c) r=2-8e^ϵ2n2.

As it can be seen in Figure 6, the starting curves of the duration probability density φ(n) are similar together as a clear 
exponential decay but at the end of the curves are different. For η>ηδ, it is as a classical asymmetrical U-shaped curve and for 
η=ηδ, it is as a clear exponential decay, but, the lower bound of the reinjection(xi) affects it as an asymptotic mode in its curve for 
η<ηδ. Also, the approximation coefficient of equation (18) is independent of the number of interactions between reinjections for η 
≤ ηδ but it depends on the number of interactions between reinjections for η>ηδ. 

Now, if the reinjection value is considered in the vicinity of the fixed point, i.e. to consider |x|∈[0,τ] with τ~ϵ1/2, we can obtain 
the duration probability density of the laminar zone φ(l) using equation φ(l)=2 ψ(X(l))|(dX(l))/dl|. To consider |x|∈ [0, ϵ1/2], the 
reinjection probability density (RPD) ψ(X) is uniform and is equal toϵ-1/2. In result, the duration probability density of the laminar 
zone φ(l) is as
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Here, we can again approximate the behavior of the duration probability density of the laminar zone φ(l) based on a 
characteristic laminar length scale lm [34]. Therefore, we obtain for equation (23) an approximation as
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If the upper bound for the local regular τ tends to δ, we can obtain numbers of interactions between reinjections (n) from the 

length of laminar zones (l), i.e. lim l n
τ δ→

= . We can compute the characteristic relation of the average length of laminar zone 〈l〉 based 

on the above equation and 〈l〉= ( )
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The characteristic relation 〈l〉 of laminar zone is proportional to ϵ-1.

THE BINARY BLOCK DESIGN
In this section, in order to optimize the Markov binary visibility graph to analyze the behavior of the dynamical system between 

reinjections in the type-III intermittency, we illustrate the binary block design. The block designs are topics in combinatorial 
mathematics which can be applied in all or part of methods and or algorithms of science classification in order to raise assortments 
of various phenomena in applied sciences [22,23]. In other words, a block design is the method of experimental design with η 
assigned treatments for a set of experimental units with z members in b blocks. The set of block sizes of τ is defined by {υωi }1<i<b 
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and the set of replications of treatments in τ are defined by {ζωi }1≤i≤η. If members of the set {υωi}1≤i≤b and the set {ζωi}1<i<b are equal 
to constant values υ and δ, respectively, then the design τ is called proper and equireplicate design. The incidence matrix Zω=[zωli] 
is the characteristic function of the block design d where the zdli is the number of iterates the lth treatment appears in the ith 
block [35]. A block design is binary if all of arrays Zω are equal to 0 or 1 [35]. In another word, if each treatment occurs at most once, 
in a block, the design is a Binary Block Design (BBD) [36]. The BBD is one of the versatile tools in pure and Applied Sciences [37-39].

TYPE-III INTERMITTENCY VERSUS MARKOV BINARY BLOCK VISIBILITY GRAPH
We first illustrate the Markov Binary Visibility Graph (MBVG) in which previous works was introduced [19,20]. The MBVG is a 

method to analyze fluctuations of a dynamical system. In fact, the MBVG maps the time series into a complex network based the 
Markov chain. A Markov chain is a discrete time process for which the future behavior and only depends on the present which 
has a set of states and transition probabilities between the states [20]. The set of the states plays an important role to analyze 
fluctuations in a dynamical system. Since the fluctuations between reinjections in type-III intermittency are slight during the 
transition of the dynamical system, the set of states in the Markov chain should be proportional to the slight fluctuations. One 
of the effective methods is the BBD which can design sets of the states so that the complex network proportional with them can 
inherit much more information from the slight fluctuations between reinjections. Here, we use a BBD within the structure of the 
MBVG with b=z blocks that 𝜐=𝜍=1 and 𝜂=2 treatments and hence rename the MBVG to Markov Binary Block Visibility Graph 
(MBBVG). To illustrate the structure the MBBVG, we first simulate the type-III intermittency based on time series { }i 1 i z 

y
≤ ≤ of the 
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where the a is equal to 1,2,…,2μ. In result, we have an incidence matrix Zτ=[zωli ] of the BBD with 2 rows and z columns. 
The incidence matrix inherits the more characteristics of fluctuations from the time series. In other words, the zω1i and zω2i are 
representatives of even and odd areas in the intermittent time series, respectively. Here, we use of the second row of the incidence 
matrix (Zω2=[zω2i ]i=1,…,n) as a set of states of Markov chain which is more appropriate for analyzing the type-III intermittency. 
Therefore, we have a Markov binary block sequence or a two-state Markov chain of Z_d2i bits which inherited the fluctuated 
behaviors of type-III intermittency from the time series. In the MBBVG, each bit of the Markov binary block sequence assigns to a 
node in the graph. Two nodes ‘i’ and ‘j’ in the MBBVG are connected, it can be draw a visibility line in the binary sequence joining 
the neighboring zω2i and zω2j that does not intersect any intermediate bits height [19]. Therefore, the i and the j are two connected 
nodes if the successive geometrical criterion is satisfied within the binary sequence as follows [20]:

2 2 2 2   0    i j h hz z z that z for i h jω ω ω ω+ > = < <  							                                                  (29)

Therefore, we have a graph similar to the MBVG which is always connected, undirected and the combination of two linear 
and maximal planar subgraphs [20]. As we know, in the MBVG, if the observer bit was bit 0, it may not observe some bits 0 
(non visible bits) in the Markov binary sequence [20]. The MBBVG extracted from the time series of the equation (2) with ϵ=10-2 
has the statistical (topological) properties which can analyze the behavior of dynamical system between reinjections in type-III 
intermittency. The Markov binary block sequence is characterized by transition probabilities P_(i→j) between the states {0,1}. 
The transition probability matrix PMBBS of the Markov binary block sequence Zω2 is defined based on transition probabilities Pi→j as 
follows [20]:
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that P1 and (1-P1 ) are the probability of bits of 1 and the probability of bits of zero in the Markov binary block sequence, 
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respectively. Here, for each k in the time series of the visibility degree there is a maximum of k-1 different possible configurations 
{Fv}v=0,…,k-2 in the Markov binary block sequence Zω2 (see, for instance, [20]). The degree distribution P(k) is equal to the sum of 
associated probabilities of possible configurations d(Fv)P(Fv) for degree of k and can be defined as follows:
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v v
v

P k d F P F
−

=

=∑  										                               (31)

where P(Fv) is the probability density function for each of the possible configurations. For, k ≥ 2, the sum of the degree 
distribution is equal to 1, i.e. ∑k≥2P(k)=1 [20]. The possible configurations distribution P(Fv) or the joint probabilities distribution of 
the Markov binary block sequence {zω2h }h=1,…,m corresponds to configuration Fv is obtained as follows
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In result, we have the degree distribution as following
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That the d(k) is the probability density function for degree of k. Because of the structure of degrees time series extracted 
from the intermittent time series, degree distributions P(k) of them is similar to degree distributions in [20] with the difference 
that Markov binary sequence in MBV graphs give its place to Markov binary block sequence in MBBV graphs. In result, we can 
use theoretical degree distribution of [20] in order to predict experimental degree distribution of the MBBVG derived from the 
intermittent time series of type-III intermittency. Here, P1 and (1-P1) are the probability of bits of 1 and the probability of bits of 
0 in the Markov binary block sequence generated by the intermittent time series. According to the previous work [20], the degree 
distribution for chaotic and stochastic systems was defined in as follows
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As we know, if members of system be statistically dependent, the probability density function d(k) is equal to 1 unless value 
of degree k is more than or equal to 5 [20]. For, k ≥ 5, the ϵ and also standard deviation σ of the Markov binary block sequence 
derived from the intermittent time series of type-III intermittency can affect the probability density function d(k). Because of 
independent of the non-laminar zones from channel widths, the probability density function d(k) is equal to 1 [20]. We plot in 
logarithmic diagrams the experimental and theoretical degree distributions of the Markov binary block sequence derived from the 
intermittent time series of type-III intermittency (Figure 7).

Figure 7. Three log-log plots of degree distributions of MBBV graphs extracted from the intermittent time series of the equation (4) with ϵ=10-2 
and the trajectory of length N=106 based on different η: (a) η=6,(b) η=ηδ, and (c) η=6.5. Solid lines P(k) correspond to equation (33).

Numerical results show which the experimental degree distribution of the MBBVG derived from the intermittent time series 
can be predicted by equation (33) and also equation (33) can distinguish two states η ≤ ηδ and η>ηδ from each other in type-III 
intermittency. Finally, results show the MBBV graph can analyze the fluctuated properties of the intermittent time series in type-III 
intermittency based on degree distributions which are in agreement with previous results [30,34].
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CONCLUSION
In this work, we have investigated the effect of the asymptotic mode and new nonlinear term on the behavior of type-

III intermittency using the function of sin(x). Results showed that the length of laminar is proportional to the behavior of the 
asymptotic mode and new nonlinear term in the interval [-δ,δ]. We have obtained the average number of iterations as characteristic 
relations 〈n〉 ∝ ϵ-1/2 type-III intermittency. Also, the average of the laminar zone has been computed and the results showed the 
average of the laminar zone is approximately proportional to ϵ-1. Finally, we used the binary block design in the MBV algorithm for 
introducing the MBBV graph in order to optimize it to better analyze the type-III intermittency. The complex network perspective of 
the MBBV graph illustrates some fluctuated properties of iterations between reinjection points in intermittency type-III, that is, it 
can distinguish two states η ≤ ηδ and η>ηδ from each other in type-III intermittency. This work again confirmed the capability of the 
MBV graphs for analyzing the various types of complex systems.
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