

 ISSN (Print) : 2320 – 3765
ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 1, January 2014

Copyright to IJAREEIE www.ijareeie.com 6511

Real-Time Clock Implementation Using I
2
C

Protocol Check
NajibGhatte

1
, Vinit Pereira

2
, MadurDattaprasad

3
, TusharSurwadkar

4

PG Student [Electronics], Dept. of Electronics, Fr. Conceicao Rodrigues College of Engg.,Bandra, Mumbai, India
 1

PG Student [Electronics], Dept. of Electronics, Fr. Conceicao Rodrigues College of Engg.,Bandra, Mumbai, India
 2

PG Student [Electronics], Dept. of Electronics, Fr. Conceicao Rodrigues College of Engg.,Bandra, Mumbai, India
 3

PG Student [Electronics], Dept. of Electronics, Fr. Conceicao Rodrigues College of Engg.,Bandra, Mumbai, India
 4

ABSTRACT: This paper talks about the indigence of Real Time Clock (RTC) for maintaining real timing constraints

for various specific applications. Real time Clocking is widely and generally used in various electronic appliances so

that tracking the traces becomes versatile and flexible for security purpose. Digital cameras used RTC in it so that when

the image is captured it will have details of, on which day and date it was captured for future reference. Such RTCs are

very useful when it comes to the need of security, cogent evidence and investigations. Microcontroller AT89C55 is

programmed using I2C Protocol with Dallas RTC IC in such a way so as to maintain Real timing and same is displayed

on LCD. The parameters can be varied by means of matrix keypad.

Keywords:RTC, I
2
C, LCD, keyboard, 89C55.

I.INTRODUCTION

The whole design gives the brief idea of interfacing of Real-Time Clock to AT89C55 microcontroller using I2C

protocol which works in master-slave configuration. A real time clock is basically just like a watch - it runs on a battery

and keeps time even when there is a power failure. Using an RTC, it is possible to keep track of long timelines, even if

microcontroller is reprogrammed or disconnected from serial bus or a power plug. Most microcontrollers, including the

Arduino, have a built-in timekeeper calledmillis() and there are also timers built into the chip that can keep track of

longer time periods like minutes or days. Well, the biggest reason is that millis() only keeps track of time sincethe

Arduino was last powered - . That means that when the power is turned on, the millisecond timer is set back to 0. The

Arduino doesn't know that it's 'Tuesday' or 'March 8th', all it can tell is 'It's been 14,000 milliseconds since It was last

turned on'.

It becomes mandatory to program in the date and time and you it will have count from that point on. But if it lost

power, it results in again resetting of the time. Much like very cheap alarm clocks: every time they lose power they

blink 12:00. While this sort of basic timekeeping is OK for some projects, some projects such as data-loggers, clocks,

etc will need to have consistent timekeeping that doesn't reset when the Arduino battery dies or is reprogrammed. Thus,

a separate RTC is included. The RTC chip is a specialized chip that just keeps track of time. It can count leap-years and

knows how many days are in a month, but it doesn't take care of Daylight Savings Time (because it changes from place

to place)
[1]

II.DESIGN

The DS1307 Serial Real-Time Clock is a low-power; full binary-coded decimal (BCD) clock/calendar plus 56 bytes of

NV SRAM. Address and data are transferred serially via a 2-wire, bi-directional bus. The clock/calendar provides

seconds, minutes, hours, day, date, month, and year information. The end of the month date is automatically adjusted

for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-

hour format with AM/PM indicator. The DS1307 has a built-in power sense circuit that detects power failures and

automatically switches to the battery supply
[2].

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 1, January 2014

Copyright to IJAREEIE www.ijareeie.com 6512

The I
2
C protocol requires only 2 signals: clock and data. Clock is known as SCL or SCK (for Serial Clock), while data

is known as SDA (for Serial Data). What makes I
2
C unique is the use of special combinations of signal conditions and

changes. Fundamentally, there are just two: Start and Stop. There are some other conditions which derive from the

presence or absence of these two, but they are the core of what makes this bus unique.

An I
2
C bus can potentially have multiple masters and many 'slave' devices sharing the same bus, although you rarely

see multiple masters in the real world. Signal contention is avoided by means of an open-collector drive scheme, where

no device will ever drive a signal high, it only drives low; for a high, the bus is pulled up by a resistor. An addressing

scheme allows a device to determine if it is being queried by the master. A master sees that a slave device is present

when the slave responds to its address by sending an Acknowledgement bit (driving SDA low); if no such addressed

device exists, the SDA line is pulled high, and this is interpreted by the Master as a Not-Acknowledgement.

An IDLE bus condition is defined as having both SDA and SCL high. (This condition can exist within a bus

transaction, but generally it is transitory.) A 'START" condition is generated by the Master, followed by 7 bits of

address, then a ReadWrite bit. If a slave device detects an address match, it will send an ACK by driving SDA low

during the next clock cycle; if no slave recognizes the address then the SDA line will be left alone to be pulled up high.

Following a successful ACK, data will be either sent to the slave device or read from the slave device (depending on

what was indicated by the Read/Write bit). Therefore, each byte is 9 bits: 7 address plus one R/W plus one ACK/NAK,

or 8 data plus one ACK/NAK. The last data byte of a transaction should generally be followed by a NAK, to indicate

that it is intended to be the final byte. After this, either a STOP or a ReSTART should be issued by the Master.
[3]

III.IMPLEMENTATION

The design is simulated via Proteus ISIS v7.6 sp4 provided by Labcenter Electronics. The design is created using

Schematic Capture and same is simulated.

A. Matrix Keypad

This is a matrix of keys which responds to specific row and column. In case of matrix keypad both the ends of switches

are connected to the port pin. The design has demand for a 4 × 4 matrix keyboard i. e. four rows and four columns,

altogether sixteen keys, where ten keys used for numeral input and remaining six used for adjusting the real-time

parameters. Thus, eight lines used to function sixteen keys. Fig. 1 shows the diagram of a matrix keypad and its

interfacing with the controller.

Fig. 1 Matrix Keyboard Interfacing with Controller

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 1, January 2014

Copyright to IJAREEIE www.ijareeie.com 6513

B. Dallas DS1307 RTC

The DS1307 is a low-power clock/calendar with 56 bytes of battery-backed SRAM. The clock/calendar provides

seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically

adjusted for months with fewer than 31 days, including corrections for leap year. The DS1307 operates as a slave

device on the I2C bus. Access is obtained by implementing a START condition and providing a device identification

code followed by a register address. Subsequent registers can be accessed sequentially until a STOP condition is

executed. When VCC falls below 1.25 × VBAT, the device terminates an access in progress and resets the device address

counter. Inputs to the device will not be recognized at this time to prevent erroneous data from being written to the

device from an out-of-tolerance system. When VCC falls below VBAT, the device switches into a low-current battery-

backup mode. Upon power-up, the device switches from battery to VCC when VCC is greater than VBAT +0.2V and

recognizes inputs when VCC is greater than 1.25 × VBAT. Fig. 2 shows the interfacing of the DS1307 with the

microcontroller.

Fig. 2 DS1307 RTC Interfacing with Controller

The time and calendar information is obtained by reading the appropriate register bytes. Table I shows the RTC

registers. The time and calendar are set or initialized by writing the appropriate register bytes. The contents of the time

and calendar registers are in the BCD format. The day-of-week register increments at midnight. Values that correspond

to the day of week are user-defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on.)

Illogical time and date entries result in undefined operation. Bit 7 of Register 0 is the clock halt (CH) bit. When this bit

is set to 1, the oscillator is disabled. When cleared to 0, the oscillator is enabled. On first application of power to the

device the time and date registers are typically reset to 01/01/00 01 00:00:00 (MM/DD/YY DOW HH:MM:SS). The

CH bit in the seconds register will be set to a 1. The clock can be halted whenever the timekeeping functions are not

required, which minimizes current (IBATDR).

TABLE I

WORKING REGISTER OF DS1307

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 1, January 2014

Copyright to IJAREEIE www.ijareeie.com 6514

The DS1307 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is defined as the 12-hour or 24-

hour mode-select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic

high being PM. In the 24-hour mode, bit 5 is the second 10-hour bit (20 to 23 hours). The hour’s value must be re-

entered whenever the 12/24-hour mode bit is changed. When reading or writing the time and date registers, secondary

(user) buffers are used to prevent errors when the internal registers update. When reading the time and date registers,

the user buffers are synchronized to the internal registers on any I2C START. The time information is read from these

secondary registers while the clock continues to run. This eliminates the need to re-read the registers in case the internal

registers update during a read. The divider chain is reset whenever the seconds register is written. Write transfers occur

on the I2C acknowledge from the DS1307. Once the divider chain is reset, to avoid rollover issues, the remaining time

and date registers must be written within one second.

The DS1307 supports the I2C protocol. A device that sends data onto the bus is defined as a transmitter and a device

receiving data as a receiver. The device that controls the message is called a master. The devices that are controlled by

the master are referred to as slaves. The bus must be controlled by a master device that generates the serial clock (SCL),

controls the bus access, and generates the START and STOP conditions. The DS1307 operates as a slave on the I2C

bus.

 Data transfer can be initiated only when the bus is not busy.
 During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line

while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

1) Bus not busy: Both data and clock lines remain HIGH.

2) START data transfer:A change in the state of the data line, from HIGH to LOW, while the clock is HIGH,

defines a START condition.

3) STOP data transfer:A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH,

defines the STOP condition.

4) Data valid: The state of the data line represents valid data when, after a START condition, the data line is stable

for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period

of the clock signal. There is one clock pulse per bit of data.Each data transfer is initiated with a START condition and

terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is not

limited, and is determined by the master device. The information is transferred byte-wise and each receiver

acknowledges with a ninth bit. Within the I2C bus specifications a standard mode (100 kHz clock rate) and a fast mode

(400 kHz clock rate) are defined. The DS1307 operates in the standard mode (100 kHz) only.

5) Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception

of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit. A

device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the

SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold

times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge

bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable

the master to generate the STOP condition. Fig. 3 shows the timing diagram indicating the data transfer using I
2
C

protocol by SDA and SCL.
[1]

Fig. 3 I
2
C Timing Diagram indicating Data Transfer

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 1, January 2014

Copyright to IJAREEIE www.ijareeie.com 6515

C. Alphanumeric LCD

LCD's are very simple to interface with the controller as well as are cost effective. The ALPHANUMERICdisplay used

in proposed design here is 4× 20(four lines & twenty characters per line) as shown in Fig. 4.The LCD requires 3 control

lines (RS, R/W & EN) & 8 (or 4) data lines. The number on data lines depends on the mode of operation. If operated in

8-bit mode then 8 data lines + 3 control lines i.e. total 11 lines are required. And if operated in 4-bit mode then 4 data

lines + 3 control lines i.e. 7 lines are required. How do we decide which mode to use? It’s simple if you have sufficient

data lines you can go for 8 bit mode & if there is a time constrain i.e. display should be faster then we have to use 8-bit

mode because basically 4-bit mode takes twice as more time as compared to 8-bit mode.

Fig. 4 DS1307 RTC Interfacing with Controller

When RS is low (0), the data is to be treated as a command. When RS is high (1), the data being sent is considered

as text data which should be displayed on the screen. When R/W is low (0), the information on the data bus is being

written to the LCD. When RW is high (1), the program is effectively reading from the LCD. Most of the times there is

no need to read from the LCD so this line can directly be connected to GND thus saving one controller line. The

ENABLE pin is used to latch the data present on the data pins. A HIGH - LOW signal is required to latch the data. The

LCD interprets and executes command at the instant the EN line is brought low. If EN is not instantiated, instruction

will never be executed.
 [5]

D. Microcontroller AT89C55

The AT89C55WD is a low-power; high-performance CMOS 8-bit microcontroller with 20K bytes of Flash

programmable read only memory and 256 bytes of RAM. The device is manufactured using Atmel’s high-density non-

volatile memory technology and is compatible with the industry standard 80C51 and 80C52 instruction set and pinout.

The on-chip Flash allows the program memory to be user programmed by a conventional non-volatile memory

programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C55WD is a

powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control

applications.The microcontroller is programmed with Embedded C language using Keil cross-compiler and Intel-hex

file is generated and embed into the controller to simulate the results.Fig. 5 shows the embedded code flow-chart.

Microcontroller is embedded with the generated hex file and design is simulated to get optimum results.

Fig. 5 Flow chart of the Embedded C Code

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 1, January 2014

Copyright to IJAREEIE www.ijareeie.com 6516

IV.RESULTS

The proposed design is simulated on the simulation platform. The alphanumeric LCD displays the time, date, day as

outsourced by the RTC. The parameters can be changed by means of matrix keypad thus interfaced and optimum

results were obtained. Fig. 6 shows the display of the LCD as per anticipation.

Fig. 6 Simulated Results Screenshot

V.CONCLUSIONS

Real time programming using I2C protocol with RTC was successfully implemented which helps to maintain real time

clock necessary for various real time running systems like mobile phones, hospitals etc. It even satisfies the need in

military applications with providing some features of changing the timing and date as per necessity.

REFERENCES

[1] (2012) DS1307 RTC Real time clock mini-breakout. [Online]. Available: http://www.ladyada.net/learn/breakoutplus/ds1307rtc.html.

[2] “DS1307 64 x 8 Serial Real-Time Clock datasheet,” Dallas Semiconductor.

[3] (2010) I2C Protocol-How it Works, And What To Watch Out For [Online]. Available: http://www.i2cprotocol.com/.
[4] “AT89C55WD datasheet,” Atmel Corporation.
[5] (2011) Interfacing LCD to 8051. [Online]. Available: http://www.dnatechindia.com/Tutorial/8051-Tutorial/Interfacing-LCD-to-8051.html.

[6] (2001) Interfacing the DS1307 with an 8051-Compatible Microcontroller[Online]. Available: http://www.maximintegrated.com/app-

notes/index.mvp/id/95.
[7] Muhammed Ali Mazidi, Janice GillispieMazidi, Rolin D. Mcklinlay, The 8051 Microcontroller and Embedded Systems Using Assembly and

C, 2nd ed.,Pearson Prentice Hall, pp. 407-429, 2009.

http://www.ijareeie.com/
http://www.ladyada.net/learn/breakoutplus/ds1307rtc.html

