
 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7163

Implementation of Soft-Core Processor
Based Ethernet Data Transfer

Indu Raj1, Rejani Krishna P2
PG Student [VLSI & Embedded Systems], Department of Electronics and Communication Engineering,

Sree Narayana Gurukulam College of Engineering, Kadayiruppu, Kerala, India1

Scientist-D, Naval Physical and Oceanographic Laboratory, Cochin, Kerala, India2

ABSTRACT: This paper presents the implementation of embedded processor inside FPGA such that it can receive
Ethernet packets, retrieve actual data, modify it and finally transmit it to any other destinations required. The
implementation platform is an evaluation board that have a Virtex-5 FPGA. Using the XPS tool, the embedded
processor MicroBlaze is configured inside the Virtex-5 FPGA. The software part of the processor is configured using
the lwIP Echo Server template available in SDK. The implementation requires ML505 evaluation board, Ethernet cable
that supports GbE data transfer, RS232 serial cable and a PC with gigabit NIC.

KEYWORDS: FPGA, MicroBlaze, Virtex-5, EDK, XPS, SDK, lwIP.

I. INTRODUCTION
 The reconfigurable devices, such as FPGA are flexible and reusable high-density circuits. That is, any portion of

the system can be reconfigured at any time while the rest of the design is still working. With the advancement of Field
Programmable Gate Arrays (FPGAs) a new trend of implementing the microprocessors on the FPGAs has emerged in
the design community [1]. The design of such microprocessors is available in the form of software bitstream, so they
are called soft-processors or soft cores. System designers can embed these cores into their designs and have the option
to customize them as required. Soft cores are technology independent and require only simulation and timing
verification. This reduces the design time as compared to a hard core processor.

 In Ethernet communication the data will be secured with a header, so there requires a method that can be used to
retrieve actual data from the Ethernet data. If a processor is used, this can be done quite easily with good speed and also
the actual data can be further processed as required. While a processor based system could simplify data retrieval and
processing, the processor embedded inside the system simplifies the technique further since it requires only less
number of components thereby reducing the device utilization. So all these factors prompted us to implement a system
using an embedded processor that receives Ethernet packets, retrieve actual data, modify it and finally transmit it to any
other destinations required with the help of Embedded Development Kit. The implementation platform is the ML505
board which supports the embedded processor MicroBlaze. MicroBlaze is a 32-bit RISC Harvard architecture soft
processor IP core with a rich instruction set optimized for embedded applications [2]. The implementation is achieved
using the Embedded Development Kit provided by Xilinx, which helps to design the complete embedded processor
more quickly and easily [3].

II. SOFTWARE OVERVIEW
 Embedded Development Kit (EDK) is an integrated software tool for developing embedded systems [4]. The EDK

package has Xilinx Platform Studio (XPS) software for configuring the hardware portion and Software Development
Kit (SDK) for configuring the software portion. XPS includes a graphical user interface that provides a set of tools to
help in the project design. The Base System Builder (BSB) is a wizard in the XPS that quickly and efficiently
establishes a working design, which can then be customized by the designer. XPS supports the creation of the
Microprocessor Hardware Specification (MHS) and Microprocessor Software Specification (MSS) files needed for
embedded tools flow. The MHS file defines the system architecture, peripherals and embedded processors [5]. The
software platform is defined by MSS file which defines driver and library customization.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7164

 After designing the hardware portion, the design has to undergo different processes like Synthesis, Simulation,
Translate, Map and Place and Route. Finally, a bit file is generated. This bit file is exported to the SDK along with the
MHS and MSS files. SDK is an integrated development environment, complimentary to XPS. It can create different
software applications for peripherals and processors that have been connected in XPS. The code can be written in the
high level programming language C/C++. The block diagram that represents the basic embedded design flow can be
seen in Fig. 1[3].

Fig. 1 Basic embedded design flow

III. SYSTEM DESIGN
 The implementation platform is the ML505 evaluation board that have Virtex-5 FPGA. The ML505 board support

MicroBlaze soft core processor. The system design is divided into two. One is hardware design, which includes the
designing methods using XPS and the other is Software design, which include designing methods using SDK.

A. Hardware Design
 Besides the MicroBlaze, other components required by the design are GPIO LEDs, a timer, an interrupt handling

controller and a serial communication device UART. The MicroBlaze is implemented entirely in the general-purpose
memory and logic fabric of FPGAs using the EDK design environment. The BSB (Base System Builder) Wizard inside
XPS is used for generating the embedded system around the MicroBlaze that is supported on the ML505 board. This
wizard allows the selection of the board and processor.

 As a first step, the MicroBlaze processor is configured. Here we set the system clock frequency to 125 MHz and
the local memory to 64 KB. The next step is the selection and configuration of peripherals, which include the

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7165

DDR_SDRAM memory, the serial communication device RS232_UART, GPIO LEDs for display, Hard Ethernet
MAC – ‘xps_ll_temac’ and timer - ‘xps_timer’. The timer was used for the reference time generation part.

Fig. 2 The automatically generated addresses

Fig. 3 The block diagram

 Interrupt is enabled for both Hard Ethernet MAC and the timer. Interrupt handling was done with the help of the
interrupt handling controller (INTC) named xps_intc_0. The instruction and data cache configuration is the final part.
The automatically generated addresses by the XPS tool for each IP cores are shown in Fig. 2. The resulted block
diagram of the design is shown in Fig. 3 [6].

B. Software Design
 The software part of the design is configured using the SDK tool. For configuring the software portion we have to

export the hardware design to the SDK along with the BIT file. SDK provides us with a great number of project
templates that we can pick from. In our design we have to configure the Ethernet MAC inside the ML505 board such
that it can receive UDP packets. So to meet our requirement, we can select the lwIP Echo Server template from the
available templates [7]. The lwIP Echo Server template provides a simple demonstration of how to use the light weight
IP stack. The server works on TCP data and listen for the input at the specified port and simply echoes back whatever
data is sent to that port. Our requirement is to receive UDP packets, modify them and either transmit them or else
display them on the LEDs. So we developed our C-program accordingly. In our design we will bind the IP address

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7166

192.168.1.10 with our board’s MAC address. Also our design is configured such that it will be listening for the input at
the port 1234.

IV. IMPLEMENTATION

 The FPGA board is connected to an Ethernet port on the host computer via an Ethernet cable. Next an IP address is
assigned to the Ethernet interface on the host computer. The IP address of the PC and the board must be in the same
subnet. The software application assigns a default IP address of 192.168.1.10 to the board. So in our design we are
assigning the PC with the IP address 192.168.1.100.

Fig. 4 Output at the serial port

 The C-code written in SDK is compiled with the GNU Compiler tool. The compiled C-files along with the
libraries generate the executable Executable and Linkable File (ELF) file. The final stage of designing is the association
between the hardware and software parts and the download of the entire image into the FPGA. For this we will use the
Data2MEM tool which links the BIT (bitstream) file generated at the end of hardware implementation and the
compiled ELF file. The result is a download.bit file and this is downloaded into the FPGA. After successful download,
we will get the output shown in Fig. 4 at the serial port.

Fig. 5 PING result

 Now we will be able to ping to the IP address 192.168.1.10 from the PC. The ping result can be seen in the Fig. 5.
We use a LabVIEW program which can transmit UDP packets to the IP address 192.168.1.10. So as we run the
LabVIEW program we can see that the Ethernet LED’s in the ML505 board lights up indicating that Ethernet reception
and transmission are in progress. The Ethernet connection LED, transmission LED and reception LED lights up along
with the reception and transmission speed indicator LED indicating 1 Gbps operation. If we have interfaced the design
with the GPIO LEDs, we can see the result on LEDs. In the Fig. 6, you can see the data “1D” displayed on the GPIO
LEDs.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7167

Fig. 6 Interfacing with LED

 To verify that the frames are correctly received and transmitted, the frames are captured using Wireshark. From the
packets captured using Wireshark (see Fig. 7), it is noted that the packets that are transmitted from the PC using the
LabVIEW program are received on the board. The data that are transmitted are 1, 2, 3, 4, 5, 6, 7, 8 and 9. By checking
the data field of the received packet, we have seen that the ASCII values of the data are received on the board. That is,
31, 32, 33, 34, 35, 36, 37, 38 and 39.

Fig. 7 Received frames captured in Wireshark

In the present case, the modifications include converting the data in ASCII format into the corresponding decimal
format, adding a constant decimal value “20” to them and then transmit them back to the PC. In Fig. 8, we can see the
corresponding hex values of the modified data are transmitted back to the PC. That is, 14, 15, 16, 17, 18, 19, 1A, 1B,
1C and 1D.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7168

Fig. 8 Modified frames transmitted back to PC captured in Wireshark

 We are able to transmit the data to any IP address by making required changes in the corresponding C file. In the
Wireshark result shown in Fig. 9, it can be seen that the board is receiving data from the IP address 192.168.1.100 and
after modifying the received data, it is broadcasted.

Fig. 9 Broadcasted frames captured in Wireshark

 If we are trying to display the modified data by adding suitable print commands in the main C-file, we will get the
output shown in Fig. 10, at the serial port.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7169

Fig. 10 Serial Output after modification

V. CONCLUSION
 MicroBlaze processor with Hard Ethernet MAC was configured using the EDK tool. Using SDK, lwIP was

configured inside the processor. The configuration is capable of receiving packets sent to the board’s IP address. The
processor will modify the data accordingly and will display it on the LEDs. We were also able to transmit the modified
data to any IP address required. The details of FPGA resource utilization is given in Fig. 11.

Fig. 11 Device utilization summary

ACKNOWLEDGMENTS
The authors wish to thank Director, NPOL for permitting to carry out this project. Authors also wish to thank Mr.

Suresh M., Scientist G, NPOL and Mrs. Jayamma T. M., Scientist F, NPOL for their valuable guidance, help and
insightful comments.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE www.ijareeie.com 7170

REFERENCES

[1] Xilinx Inc. MicroBlaze Reference Manual, UG081 (v13.2)
[2] Xilinx,http://www.xilinx.comlproducts/design
[3] EDK Concepts, Tools and Techniques, A Hands-On Guide to Effective Embedded System Design, UG683 April 24, 2012
[4] Embedded System Tools Guide, October 6, 2003
[5] Platform Specification Format Reference Manual, UG642 July 6, 2011
[6] ml505_overview_setup
[7] Xilinx, Embedded System Example, XAPP1026, version 2.2, 2006
[8] National Instruments LabVIEW Fundamentals and Getting Started Guide.

