ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Implementation of Soft-Core Processor
Based Ethernet Data Transfer

Indu Raj*, Rejani Krishna P?
PG Student [VLSI & Embedded Systems], Department of Electronics and Communication Engineering,
Sree Narayana Gurukulam College of Engineering, Kadayiruppu, Kerala, India®

Scientist-D, Naval Physical and Oceanographic Laboratory, Cochin, Kerala, India®

ABSTRACT: This paper presents the implementation of embedded processor inside FPGA such that it can receive
Ethernet packets, retrieve actual data, modify it and finally transmit it to any other destinations required. The
implementation platform is an evaluation board that have a Virtex-5 FPGA. Using the XPS tool, the embedded
processor MicroBlaze is configured inside the Virtex-5 FPGA. The software part of the processor is configured using
the IwlIP Echo Server template available in SDK. The implementation requires ML505 evaluation board, Ethernet cable
that supports GbE data transfer, RS232 serial cable and a PC with gigabit NIC.

KEYWORDS: FPGA, MicroBlaze, Virtex-5, EDK, XPS, SDK, IwlIP.

I. INTRODUCTION

The reconfigurable devices, such as FPGA are flexible and reusable high-density circuits. That is, any portion of
the system can be reconfigured at any time while the rest of the design is still working. With the advancement of Field
Programmable Gate Arrays (FPGAs) a new trend of implementing the microprocessors on the FPGAs has emerged in
the design community [1]. The design of such microprocessors is available in the form of software bitstream, so they
are called soft-processors or soft cores. System designers can embed these cores into their designs and have the option
to customize them as required. Soft cores are technology independent and require only simulation and timing
verification. This reduces the design time as compared to a hard core processor.

In Ethernet communication the data will be secured with a header, so there requires a method that can be used to
retrieve actual data from the Ethernet data. If a processor is used, this can be done quite easily with good speed and also
the actual data can be further processed as required. While a processor based system could simplify data retrieval and
processing, the processor embedded inside the system simplifies the technique further since it requires only less
number of components thereby reducing the device utilization. So all these factors prompted us to implement a system
using an embedded processor that receives Ethernet packets, retrieve actual data, modify it and finally transmit it to any
other destinations required with the help of Embedded Development Kit. The implementation platform is the ML505
board which supports the embedded processor MicroBlaze. MicroBlaze is a 32-bit RISC Harvard architecture soft
processor IP core with a rich instruction set optimized for embedded applications [2]. The implementation is achieved
using the Embedded Development Kit provided by Xilinx, which helps to design the complete embedded processor
more quickly and easily [3].

Il. SOFTWARE OVERVIEW

Embedded Development Kit (EDK) is an integrated software tool for developing embedded systems [4]. The EDK
package has Xilinx Platform Studio (XPS) software for configuring the hardware portion and Software Development
Kit (SDK) for configuring the software portion. XPS includes a graphical user interface that provides a set of tools to
help in the project design. The Base System Builder (BSB) is a wizard in the XPS that quickly and efficiently
establishes a working design, which can then be customized by the designer. XPS supports the creation of the
Microprocessor Hardware Specification (MHS) and Microprocessor Software Specification (MSS) files needed for
embedded tools flow. The MHS file defines the system architecture, peripherals and embedded processors [5]. The
software platform is defined by MSS file which defines driver and library customization.

Copyright to IJAREEIE Www.ijareeie.com 7163

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

After designing the hardware portion, the design has to undergo different processes like Synthesis, Simulation,
Translate, Map and Place and Route. Finally, a bit file is generated. This bit file is exported to the SDK along with the
MHS and MSS files. SDK is an integrated development environment, complimentary to XPS. It can create different
software applications for peripherals and processors that have been connected in XPS. The code can be written in the
high level programming language C/C++. The block diagram that represents the basic embedded design flow can be
seen in Fig. 1[3].

HOL or
Schamatic
ISE Ej XPS SDK

XPs . .
Launchas Deslgn Entry
Add Automatically | |4 Craate design in Base System Builder
{automatically launches the first time)
Embedded Source 2_ Medify design in System Assembly View
Create/|dentify a Workspace
{Autcmatic)
Other Sources
-RTL Export to [Create a New Project/Board
- Core Generator = SDK | Support Package
- Syslam Generator {.xml file only)
‘ Application Development
Implementation to Bitstream
1. Synihesis I of
2. Translate . .
2 MAR Netlist Generation -
4. PAR with Platgen Download to FPGA
5. Timing
&. Bitstream Genaration l
7. Data2MEM
bit ‘ Debug
l bmm
Export to SDK
(.xml, .bit, .bmm files)
Board

Fig. 1 Basic embedded design flow

I.SYSTEM DESIGN

The implementation platform is the ML505 evaluation board that have Virtex-5 FPGA. The ML505 board support
MicroBlaze soft core processor. The system design is divided into two. One is hardware design, which includes the
designing methods using XPS and the other is Software design, which include designing methods using SDK.

A. Hardware Design

Besides the MicroBlaze, other components required by the design are GPIO LEDs, a timer, an interrupt handling
controller and a serial communication device UART. The MicroBlaze is implemented entirely in the general-purpose
memory and logic fabric of FPGAs using the EDK design environment. The BSB (Base System Builder) Wizard inside
XPS is used for generating the embedded system around the MicroBlaze that is supported on the ML505 board. This
wizard allows the selection of the board and processor.

As a first step, the MicroBlaze processor is configured. Here we set the system clock frequency to 125 MHz and
the local memory to 64 KB. The next step is the selection and configuration of peripherals, which include the

Copyright to IJAREEIE Www.ijareeie.com 7164

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering
(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

DDR_SDRAM memory, the serial communication device RS232_UART, GPIO LEDs for display, Hard Ethernet
MAC - “xps_Il_temac’ and timer - “xps_timer’. The timer was used for the reference time generation part.

(;-IlBusInterfaces | Ports“ Addresses l @

Instance Base Name Base Address High Address Size BusInterface(s) Bus Name Lock
[microblaze 0's Address Map
- dimb_cntlr C_BASEADDR 0x00000000 (x0000FFFF 64K [«]SLMB dimb M
ilmb_cntlr C_BASEADDR 0x00000000 (x0000FFFF 64K [|SLME ilmb o
- DDRZ_SDRAM C_MPMC_BASE.. (0x50000000 (XSFFFFFFF 256M | KCLOXCLL:SDM... microblaze 0 IX... []
LEDs 8Bit C_BASEADDR 0xB81400000 (xB140FFFF 64K [|SPLB mb_plb m
~xps_intc_0 C_BASEADDR (x81800000 (x8180FFFF 64K | SPLR mb_plb M
xps_timer 0 C_BASEADDR 0x83C00000 0x83COFFFF 64K [|SPLB mb_plb o
-~ RS232 Uart 1 C_BASEADDR (84000000 (xB400FFFF 64K [|SPLB mb_pl il
mdm_0 C_BASEADDR (xB4400000 (xB440FFFF 4K [w|SPLB mb_plb o
- DDRZ_SDRAM C_SDMA_CTRL_.. 0x84600000 (x8460FFFF 64K | SDMA_CTRL2 mb_plb M
- Hard_Ethernet_ MAC C_BASEADDR (0x87000000 (x8707FFFF 512K [=|5PLB mh_plb o
4 T | b

Fig. 2 The automatically generated addresses

INTC
GPIO
DDR2

UART

BRAM
HARD ETHERNET

TIMER

Fig. 3 The block diagram

Interrupt is enabled for both Hard Ethernet MAC and the timer. Interrupt handling was done with the help of the
interrupt handling controller (INTC) named xps_intc_0. The instruction and data cache configuration is the final part.
The automatically generated addresses by the XPS tool for each IP cores are shown in Fig. 2. The resulted block
diagram of the design is shown in Fig. 3 [6].

=
A

B. Software Design

The software part of the design is configured using the SDK tool. For configuring the software portion we have to
export the hardware design to the SDK along with the BIT file. SDK provides us with a great number of project
templates that we can pick from. In our design we have to configure the Ethernet MAC inside the ML505 board such
that it can receive UDP packets. So to meet our requirement, we can select the IwIP Echo Server template from the
available templates [7]. The IwIP Echo Server template provides a simple demonstration of how to use the light weight
IP stack. The server works on TCP data and listen for the input at the specified port and simply echoes back whatever
data is sent to that port. Our requirement is to receive UDP packets, modify them and either transmit them or else
display them on the LEDs. So we developed our C-program accordingly. In our design we will bind the IP address

Copyright to IJAREEIE Www.ijareeie.com 7165

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering
(An I1SO 3297: 2007 Certified Organization)
Vol. 3, Issue 2, February 2014
192.168.1.10 with our board’s MAC address. Also our design is configured such that it will be listening for the input at
the port 1234.
IV.IMPLEMENTATION

The FPGA board is connected to an Ethernet port on the host computer via an Ethernet cable. Next an IP address is

assigned to the Ethernet interface on the host computer. The IP address of the PC and the board must be in the same

subnet. The software application assigns a default IP address of 192.168.1.10 to the board. So in our design we are
assigning the PC with the IP address 192.168.1.100.

————— 1wIP UDFP echo ——————
UDP packets sent to port 1234 will be echoed back
Board IP: 192.168.1.10
Metmask : 255.255.255.0
Gateway : 192.1€68.1.1
auto—negotiated link speed:

1000
UDP echo server started @ port 1234

Fig. 4 Output at the serial port

The C-code written in SDK is compiled with the GNU Compiler tool. The compiled C-files along with the
libraries generate the executable Executable and Linkable File (ELF) file. The final stage of designing is the association
between the hardware and software parts and the download of the entire image into the FPGA. For this we will use the
Data2MEM tool which links the BIT (bitstream) file generated at the end of hardware implementation and the
compiled ELF file. The result is a download.bit file and this is downloaded into the FPGA. After successful download,
we will get the output shown in Fig. 4 at the serial port.

BR C\Windows\system32\cmd.exe ﬂlﬂ_hj
_—

— o
Microsoft Windows [Uersion 6.1.768081
iCopyright {c> 2089 Microsoft Corporation. HAll rights reserved.

ml»

C:xUsersFPGAlah>ping 192.168.1.18

Pinging 192 _168.1.18 with 32 bhytes of data:

Reply from 192.168.1.10: bytes=32 time{ims TTL=255
Reply from 192.168.1.10: bytes=32 time<ims TTL=255
Reply from 192.168.1.108: bytes=32 time{ims TIL=255
Reply from 192.168.1.10: bytes=32 time{ims TTL=255

4, Lost = @ (Bx loss).
n milli-seconds:
Hinimum = Bme. Maximum = Bns. Average = Bms

C:sUsers~FPGAlah>_

Fig. 5 PING result

Now we will be able to ping to the IP address 192.168.1.10 from the PC. The ping result can be seen in the Fig. 5.
We use a LabVIEW program which can transmit UDP packets to the IP address 192.168.1.10. So as we run the
LabVIEW program we can see that the Ethernet LED’s in the ML505 board lights up indicating that Ethernet reception
and transmission are in progress. The Ethernet connection LED, transmission LED and reception LED lights up along
with the reception and transmission speed indicator LED indicating 1 Gbps operation. If we have interfaced the design
with the GPIO LEDs, we can see the result on LEDs. In the Fig. 6, you can see the data “1D” displayed on the GPIO
LEDs.

Copyright to IJAREEIE Www.ijareeie.com 7166

&

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

1Gb/s

Rx Data

Fig. 6 Interfacing with LED

To verify that the frames are correctly received and transmitted, the frames are captured using Wireshark. From the
packets captured using Wireshark (see Fig. 7), it is noted that the packets that are transmitted from the PC using the
LabVIEW program are received on the board. The data that are transmitted are 1, 2, 3, 4, 5, 6, 7, 8 and 9. By checking
the data field of the received packet, we have seen that the ASCII values of the data are received on the board. That is,
31, 32, 33, 34, 35, 36, 37, 38 and 39.

File Edit View Go Capture Analyze Statistics Help
BUBAN CAXZE Ac00T2IEE QAT BDRE(B

Eilter: * Expression.. Clear Apply

Ne. . Time Source Destination Protocol MAC Src MAC Dest

192.168.1.100 192.168.1.10 00:1e:37:37:89:5¢C 00:0a:35:01:ed:3a
8 0.567268 192.168.1.10 192.168.1.100 00:0a:35:01:ed:3a 00:1e:37:3f:89:5¢c

10 0.858074 102.168.1.10 192,168.1,100 ' 00:0a:35:01:ed:3a 00:ile:37:3f:89:5¢

@ Frame 7 (52 bytes on wire, 52 bytes captured)
@ Ethernet II, src: usi_3f:89:5c (00:1e:37:3f:89:5c), Dst: Xilinx_0l:ed:3a (00:0a:35:01:ed:3a)
[Internet Protocol, Src: 192.168.1.100 (192.168.1.100), Dst: 192.168.1.10 (192.168.1.10)

B Data (10 bytes)

Data: 30313233343536373839

0000 00 0Qa 35 0L ed 3a 00 1e 37 3f 89 5c 08 00 45 00 ..5..:.. 72.\..E.
0010 00 26 04 B2 00 00 80 11 00 00 cO aB 01 64 c0 a8 .&..... vuuu. d..
0020 01 0a 04 d2 04 d2 00 12 83 e2 ENEFEFEEEEEE 012345
0030 6750

Fig. 7 Received frames captured in Wireshark

In the present case, the modifications include converting the data in ASCII format into the corresponding decimal
format, adding a constant decimal value “20” to them and then transmit them back to the PC. In Fig. 8, we can see the
corresponding hex values of the modified data are transmitted back to the PC. That is, 14, 15, 16, 17, 18, 19, 1A, 1B,
1C and 1D.

Copyright to IJAREEIE Www.ijareeie.com 7167

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering
(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

File Edit View Go Capture Analyze Statistics Help
BWeee DAXREE QAev0T L BN @Pu% B

Fitter: v Expression.. Clear Apply

Ha. . Time Source Destination Protocal MAC Src MAC Dest

10 0.858074 197.168.1,10 102.168.1.100) 00:0a:35:01:ed:3a 00:le:37:3F:80:5¢

[Frame 8 (60 bytes on wire, 60 bytes captured)

® Ethernet II, Src: Xilinx_01:ed:3a (00:0a:35:01:ed:3a), Dst: Usi_3f:89:5c (00:1e:37:3f:89:5¢)
[Internet Protocol, src: 192.168.1.10 (192.168.1.10), Dst: 192.168.1.100 (192.168.1.100)

[User Datagram Protocol, Src Port: search-agent (1234), Dst Port: search-agent (1234)

B Data (10 bytes)

pata: 1415161718101a1R1c1D

0000 00 1e 37 3Ff 895c000a 3501 ed 32 0B 004500 ..72.%.. 5..i..E.

0010 00 26 00 01 00 00 FF 11 38 07 0 aB 01 0a c0 a8 .&..... A
0020 01 64 04 d2 04 d2 00 12 9) EIFEREHUEERY .d..... .. Bl
0030 [ERELETEEE 00 00 00 00 00 00 00 00 ...

Fig. 8 Modified frames transmitted back to PC captured in Wireshark

We are able to transmit the data to any IP address by making required changes in the corresponding C file. In the
Wireshark result shown in Fig. 9, it can be seen that the board is receiving data from the IP address 192.168.1.100 and
after modifying the received data, it is broadcasted.

File Edit View Go Capture Analyze Statistics Help

JedeN E@AxgEa¢s0TL E@aan §B8%(B
Filter: v Expression.. Clear Apply

No. . Time Source Destination Protocal MAC 5rc MAL Dest

10 0.858974 192.168.1.10 255,255, 255. 255 00:0a:35:01:ed:3a

[# Ethernet II, src: Xilinx_0l:ed:3a (00:0a:35:01:ed:3a), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
[Internet Protocol, src: 192,168.1.10 (192.168.1.10), Dst: 255.255.255.255 (255.255.255.255)
[User Datagram Protocol, 5Src Port: search-agent (1234), Dst Port: search-agent (1234)

[Data (10 bytes)

Data: 1415161718191A1B1C1D

00000 F £F £f £f £ £ 00 0a 35 01 ed 3a 08 00 45 00 5o tnnE.
0010 00 26 00 01 00 00 Ff 11 38 07 c0 a8 01 0a ff ff .&...... it
0020 ff FF 04 62 04 d2 0012 9 e ENEHIHUNEEY =
0030 00 00 00 00 00 00 00 00

Fig. 9 Broadcasted frames captured in Wireshark

If we are trying to display the modified data by adding suitable print commands in the main C-file, we will get the
output shown in Fig. 10, at the serial port.

Copyright to IJAREEIE Www.ijareeie.com 7168

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

————— 1wIP UDP echo -——-——

UDP packets sent to port 1234 will be echoed back
Board IP: 152.168.1.10

Netmask : 255.255.255.0

Gateway : 192.168.1.1
auto-negotiated link speed: 1000
UDP echo server started @ port 1234
Data: 0 Modified Data: 20

Data: 1 Modified Data: 21

Data: 2 Modified Data: 22

Data: 3 Modified Data: 23

Data: 4 Modified Data: 24

Data: 5 Modified Data: 25

Data: & Modified Data: 26

Data: 7 Modified Data: 27

Data: & Modified Data: 28

Data: 89 Modified Data: 29

Data: 0 Modified Data: 20

Data: 1 Modified Data: 21

Data: 2 Modified Data: 22

Data: 3 Modified Data: 23

Data: 4 Modified Data: 24

Data: 5 Modified Data: 25

Data: &€ Modified Data: 26

Data: 7 Modified Data: 27

Data: 8 Modified Data: 28

Data: § Modified Data: 29

Fig. 10 Serial Output after modification

V. CONCLUSION

MicroBlaze processor with Hard Ethernet MAC was configured using the EDK tool. Using SDK, IwIP was
configured inside the processor. The configuration is capable of receiving packets sent to the board’s IP address. The
processor will modify the data accordingly and will display it on the LEDs. We were also able to transmit the modified
data to any IP address required. The details of FPGA resource utilization is given in Fig. 11.

Device Utilization Summary | 8|
Slice Logic Utilization Used Available Utilization Note(s)
MNumber of LUT Fiip Flop pairs used 12,03
Number with an unused Fip Flop 3,390 12,0% 8%
Number with an unused LUT 3,969 12,036 32%
Number of fully used LUT-FF pairs 4677 12,036 3%
Number of Blod®RAM FIFO 51 60 85%
Number using Blod®RAM only 51
Number of 36k BlodkRAM used 47
Number of 18k BlockRAM used 6
Total Memory used (xB) 1,800 2,160 83%

Fig. 11 Device utilization summary

ACKNOWLEDGMENTS

The authors wish to thank Director, NPOL for permitting to carry out this project. Authors also wish to thank Mr.
Suresh M., Scientist G, NPOL and Mrs. Jayamma T. M., Scientist F, NPOL for their valuable guidance, help and
insightful comments.

Copyright to IJAREEIE Www.ijareeie.com 7169

b

ISSN (Print) : 2320 — 3765
ISSN (Online): 2278 — 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An I1SO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

REFERENCES

[1] Xilinx Inc. MicroBlaze Reference Manual, UG081 (v13.2)

[2] Xilinx,http://mmww.xilinx.comlproducts/design

[3] EDK Concepts, Tools and Techniques, A Hands-On Guide to Effective Embedded System Design, UG683 April 24, 2012
[4] Embedded System Tools Guide, October 6, 2003

[5] Platform Specification Format Reference Manual, UG642 July 6, 2011

[6] mI505_overview_setup

[7]1 Xilinx, Embedded System Example, XAPP1026, version 2.2, 2006

[8] National Instruments LabVIEW Fundamentals and Getting Started Guide.

Copyright to IJAREEIE Www.ijareeie.com 7170

