

## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2014

## ON G\*Bω - CLOSED SETS IN BITOPOLOGICAL Spaces

P. Priyadharsini<sup>1</sup>, A. Parvathi<sup>2</sup>, G. K. Chandrika<sup>3</sup>

Ph.D. Research Scholar<sup>1</sup>, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

Professor<sup>2</sup>, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

Retd. Professor<sup>3</sup>, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

**ABSTRACT**: The aim of this paper is to introduce the concepts of closed sets in bitopological space called (i, j) - generalized star b $\omega$  - closed sets, (i, j) - generalized star b $\omega$  - open sets and study their basic properties.

**KEYWORDS**: (i, j) - generalized star  $b\omega$  - closed sets, (i, j) - generalized star  $b\omega$  - open sets.

#### I. INTRODUCTION

Generalized closed sets form a stronger tool in the characterization of bitopological spaces. The study of bitopological spaces was initiated by Kelly [8] and thereafter a large number of papers have been done to generalize the topological concepts to bitopological setting. Fukutake [5] introduced g - closed sets in bitopological spaces. Abo Khadra and Nasef [1] discussed b - open sets in bitopological spaces. Alswidi et al. [2] introduced a new notions on an ij -  $\omega$  - closed sets in bitopological spaces.

In this paper, a new class of sets in bitopological spaces called (i, j) -  $g^*b\omega$  - closed sets is introduced. A comparative study has been done with already existing closed sets and (i, j) -  $g^*b\omega$  - closed sets.

#### **II. PRELIMINARIES**

A triple  $(X, \tau_1, \tau_2)$  where X is a non empty set and  $\tau_1$  and  $\tau_2$  are topologies on X is called a bitopological space. For a subset A of  $(X, \tau_1, \tau_2)$ , the closure of A and the interior of A with respect to  $\tau_i$  is denoted by i - cl(A) and i - int(A) respectively for i = 1, 2. The intersection of all  $\tau_i$  - closed sets containing A is called i - cl(A). The union of all  $\tau_i$  - open sets contained in A is i - int(A).

**Definition 2.1** For i, j = 1, 2 and i  $\neq$  j, a subset A of a bitopological space (X,  $\tau_1$ ,  $\tau_2$ ) is called

- (i) (i, j) semi closed (Maheswari et al., 1977 78) if j int(i cl(A))  $\subseteq A$ .
- (ii) (i, j)  $\alpha$  closed [7] if i cl(j int(i cl(A)))  $\subseteq$  A.
- (iii) (i, j) pre closed [7] if i  $cl(j int(A)) \subseteq A$ .
- (iv) (i, j) regular closed [4] if i  $cl(j int(A)) \subseteq A$ .
- (v) (i, j) b closed [3] if (j int(i cl(A)))  $\cup$  (i cl(j int(A)))  $\subseteq$  A.



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 5, May 2014

The complements of the above mentioned sets are called (i, j) - semi open, (i, j) -  $\alpha$  - open, (i, j) - pre open, (i, j) - regular open and (i, j) - b - open sets respectively.

The intersection of all  $\tau_j$  - semi closed (resp.  $\tau_j - \alpha$  - closed,  $\tau_j$  - pre closed,  $\tau_j$  - regular closed and  $\tau_j$  - b - closed) subsets of (X,  $\tau$ ) containing A is called the  $\tau_j$  - semi closure (resp.  $\tau_j$  -  $\alpha$  - closure,  $\tau_j$  - pre closure,  $\tau_j$  - regular closure and  $\tau_j$  - b - closure) of A and is denoted by  $\tau_j$  - scl(A) (resp.  $\tau_j$  -  $\alpha$ cl(A),  $\tau_j$  - pcl(A),  $\tau_j$  - rcl(A) and  $\tau_j$  - bcl(A)).

**Definition 2.2** For i, j = 1, 2 and i  $\neq$  j, a subset A of a bitopological space (X,  $\tau_1$ ,  $\tau_2$ ) is called

- (i) (i, j) generalized closed (briefly, (i, j) g closed) [5] if  $\tau_j$  cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  open in X.
- (ii) (i, j) regular generalized closed (briefly, (i, j) rg closed) [3] if  $\tau_j$  cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  regular open in X.
- (iii) (i, j) weakly generalized closed (briefly, (i, j) wg closed) [6] if  $\tau_j$  cl(A)[ $\tau_i$  int(A)]  $\subseteq$  U whenelver A  $\subseteq$  U and U is  $\tau_i$  open in X.
- (iv) (i, j) generalized star closed (briefly, (i, j) g\* closed) [13] if  $\tau_j$  cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  g open in X.
- (v) (i, j) generalized  $\alpha$  closed (briefly, (i, j)  $g\alpha$  closed) [9] if  $\tau_j$   $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$   $\alpha$  open in X.
- (vi) (i, j)  $\alpha$  generalized closed (briefly, (i, j)  $\alpha$ g closed) [12] if  $\tau_j$   $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  open in X.
- (vii) (i, j) generalized star pre closed (briefly, (i, j)  $g^*p$  closed) [14] if  $\tau_j$  pcl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  g open in X.
- (viii) (i, j) generalized star semi closed (briefly, (i, j) g\*s closed) [12] if  $\tau_j$  scl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  gs open in X.
- (ix) (i, j) generalized <sup>#</sup> semi closed (briefly, (i, j)  $g^{#}s$  closed) [15] if  $\tau_{j}$  scl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_{i}$   $\alpha g$  open in X.

The complement of the above mentioned sets are called their respective open sets.

#### III. (i, j) - g\*bω - CLOSED SETS

In this section, the concept of  $(i, j) - g^*b\omega$  - closed sets in bitopological spaces is defined and some of their characterizations and properties are studied.

**Definition 3.1** A subset A of a bitopological space  $(X, \tau_1, \tau_2)$  is called (i, j) - *generalized star b omega closed* (briefly, (i, j) - *g*\*b $\omega$  - closed) if  $\tau_i$  - bcl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\tau_i$  - gs - open in (X,  $\tau_1, \tau_2$ ), where i, j = 1, 2 and i  $\neq$  j.

The set of all (i, j) - g\*b $\omega$  - closed sets in  $(X, \tau_1, \tau_2)$  is denoted by G\*b $\omega$ C(i, j).

**Remark 3.2** By setting  $\tau_i = \tau_j$  in definition 3.1, an (i, j) - g\*b $\omega$  - closed set is a g\*b $\omega$  - closed set [11].

**Example 3.3** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . Then  $\phi, X$ ,  $\{b\}, \{c\}, \{b, c\}$  are (1, 2) - g\*b $\omega$  - closed. Copyright to IJIRSET **WWW.ijirset.com** 12769



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 5, May 2014

**Theorem 3.4** Every  $\tau_j$  - closed (resp.  $\tau_j$  - semi closed,  $\tau_j$  -  $\alpha$  - closed,  $\tau_j$  - pre closed,  $\tau_j$  - regular closed) set in (X,  $\tau_1$ ,  $\tau_2$ ) is (i, j) - g\*b $\omega$  - closed.

**Proof:** Let A be  $\tau_j$  - closed (resp.  $\tau_j$  - semi closed,  $\tau_j - \alpha$  - closed,  $\tau_j$  - pre closed,  $\tau_j$  - regular closed) in  $(X, \tau_1, \tau_2)$  such that  $A \subseteq U$ , where U is  $\tau_i$  - gs - open. Since A is  $\tau_j$  - closed (resp.  $\tau_j$  - semi closed,  $\tau_j$  -  $\alpha$  - closed,  $\tau_j$  - pre closed,  $\tau_j$  - pre closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed (resp.  $\tau_j$  - semi closed),  $\tau_j$  - closed,  $\tau_j$  - pre closed,  $\tau_j$  - regular closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed (resp.  $\tau_j$  - semi closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed),  $\tau_j$  - closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed),  $\tau_j$  - closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed),  $\tau_j$  - closed),  $\tau_j$  - closed (resp.  $\tau_j$  - closed),  $\tau_j$  - closed), \tau\_j - closed),  $\tau_j$  - clo

The converse of the above theorem is not true in general as can be seen from the following examples:

**Example 3.5** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . The subsets  $\{b\}$  is  $(1, 2) - g^*b\omega$  - closed but not  $\tau_2$  - closed.

**Example 3.6** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . The subsets  $\{a, c\}$  is  $(1, 2) - g^*b\omega$  - closed but not  $\tau_2$  - semi closed.

**Example 3.7** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . The subsets  $\{a\}, \{b\}$  are  $(1, 2) - g^*b\omega$  - closed but not  $\tau_2 - \alpha$  - closed, not  $\tau_2$  - pre closed and not  $\tau_2$  - regular closed.

**Theorem 3.8** Every (i, j) - g\*s - closed set in  $(X, \tau_1, \tau_2)$  is (i, j) - g\*b $\omega$  - closed.

**Proof:** Let  $A \subseteq U$  and U be  $\tau_i$  - gs - open in  $(X, \tau_1, \tau_2)$ . Since A is (i, j) - g\*s - closed in  $(X, \tau_1, \tau_2), \tau_j$  - scl $(A) \subseteq U$ . But  $\tau_i$  - scl $(A) \subseteq \tau_i$  - scl $(A) \subseteq U$ . Therefore A is (i, j) - g\*b $\omega$  - closed.

The converse of the above theorem is not true in general as can be seen from the following example:

**Example 3.9** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ . The subsets  $\{b\}, \{c\}, \{a, b\}$  and  $\{a, c\}$  are  $(1, 2) - g^*b\omega$  - closed but not  $(1, 2) - g^*s$  - closed.

**Remark 3.10** The following examples show that  $(i, j) - g^*b\omega$  - closed set is independent from (i, j) - semi closed set,  $(i, j) - \alpha$  - closed set and (i, j) - pre closed set.

**Example 3.11** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . The subset  $\{a, c\}$  is (1, 2) - semi closed,  $(1, 2) - \alpha$  - closed and (1, 2) - pre closed but not (1, 2) - g\*b $\omega$  - closed.

**Example 3.12** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . The subset  $\{a, c\}$  is  $(1, 2) - g^*b\omega$  - closed but not (1, 2) - semi closed, not  $(1, 2) - \alpha$  - closed and not (1, 2) - pre closed.

**Remark 3.13** The following examples show that  $(i, j) - g^*b\omega$  - closed set is independent from (i, j) - regular closed set and (i, j) - g - closed set, (i, j) - wg - closed.

**Example 3.14** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . The subset  $\{a, c\}$  is (1, 2) - regular closed and (1, 2) - g - closed (1, 2) - wg - closed but not (1, 2) - g\*b $\omega$  - closed.



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 5, May 2014

**Example 3.15** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . The subset  $\{b\}$  is  $(1, 2) - g^*b\omega$  - closed but not (1, 2) - regular closed and not (1, 2) - g - closed, not (1, 2) - wg - closed.

**Remark 3.16** The following examples show that  $(i, j) - g^*b\omega$  - closed set is independent from (i, j) - rg - closed set and  $(i, j) - g^*$  - closed set.

**Example 3.17** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . The subset  $\{a, c\}$  is  $(1, 2) - rg - closed (1, 2) - g^* - closed but not <math>(1, 2) - g^*b\omega$  - closed.

**Example 3.18** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . The subset  $\{b\}$  is  $(1, 2) - g^*b\omega$  - closed but not (1, 2) - rg - closed, not  $(1, 2) - g^*$  - closed.

**Remark 3.19** The following examples show that  $(i, j) - g^*b\omega$  - closed set is independent from  $(i, j) - g\alpha$  - closed set and  $(i, j) - g^*p$  - closed set.

**Example 3.20** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . The subset  $\{a, c\}$  is  $(1, 2) - g\alpha$  - closed and  $(1, 2) - g^*p$  - closed but not  $(1, 2) - g^*b\omega$  - closed.

**Example 3.21** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . The subsets  $\{a\}, \{b\}$  are  $(1, 2) - g^*b\omega$  - closed but not  $(1, 2) - g\alpha$  - closed and not  $(1, 2) - g^*p$  - closed.

**Remark 3.22** The following examples show that the concepts  $(i, j) - \alpha g$  - closed set and  $(i, j) - g^*b\omega$  - closed set are independent.

**Example 3.23** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . The subset  $\{a, c\}$  is  $(1, 2) - \alpha g$  - closed but not  $(1, 2) - g^*b\omega$  - closed.

**Example 3.24** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . The subsets  $\{a\}, \{b\}$  are  $(1, 2) - g^*b\omega$  - closed but not  $(1, 2) - \alpha g$  - closed.

**Remark 3.25** The following examples show that the concepts  $(i, j) - g^{\#}s - closed$  set and  $(i, j) - g^{*}b\omega$  - closed set are independent.

**Example 3.26** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . The subset  $\{a, c\}$  is  $(1, 2) - g^{\#}s$  - closed but not  $(1, 2) - g^{\#}b\omega$  - closed.

**Example 3.27** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ . The subsets  $\{b\}, \{c\}, \{a, b\}$  and  $\{a, c\}$  are  $(1, 2) - g^*b\omega$  - closed but not  $(1, 2) - g^*s$  - closed.

# IJIR SET

## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2014

The following diagram shows the relationships of  $(i, j) - g^*b\omega$  - closed sets with other sets:



where  $A \longrightarrow B$  represents A implies B and A  $\iff B$  represents A and B are independent.

**Remark 3.28** Union of two (i, j) -  $g^*b\omega$  - closed sets need not be (i, j) -  $g^*b\omega$  - closed as can be seen from the following example:

**Example 3.29** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let  $A = \{a\}$  and  $B = \{b\}$ . Then  $A \cup B = \{a, b\}$  is not  $(1, 2) - g^*b\omega$  - closed but  $A = \{a\}$  and  $B = \{b\}$  are  $(1, 2) - g^*b\omega$  - closed.

**Remark 3.30** Difference of two (i, j) -  $g^*b\omega$  - closed sets need not be (i, j) -  $g^*b\omega$  - closed set as can be seen from the following example:

**Example 3.31** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}\}$ . Let  $A = \{a, c\}$  and  $B = \{c\}$ . Then A and B are  $(1, 2) - g^*b\omega$  - closed but  $A \setminus B = \{a\}$  is not  $(1, 2) - g^*b\omega$  - closed.

**Theorem 3.32** If a subset A of a bitopological space  $(X, \tau_1, \tau_2)$  is  $(i, j) - g^*b\omega$  - closed then  $\tau_j$  - bcl(A) \ A contains no nonempty  $\tau_i$  - gs - closed set.

**Proof:** Let A be an (i, j) -  $g^*b\omega$  - closed set and F be a  $\tau_i$  - gs - closed set such that  $F \subseteq \tau_j$  -  $bcl(A) \setminus A$ . Therefore  $A \subseteq F^c$  and  $F \subseteq \tau_j$  - bcl(A). Since  $F^c$  is  $\tau_i$  - gs - open and A is (i, j) -  $g^*b\omega$  - closed,  $\tau_j$  -  $bcl(A) \subseteq F^c$ . Thus  $F \subseteq [\tau_j - bcl(A)]^c = X \setminus [\tau_j - bcl(A)]$ . Hence  $F \subseteq [\tau_j - bcl(A)] \cap [X \setminus [\tau_j - bcl(A)]] = \varphi$ . Therefore  $F = \varphi$ . Hence  $\tau_j - bcl(A) \setminus A$  contains no nonempty  $\tau_i$  - gs - closed set.

**Theorem 3.33** Let A be an (i, j) -  $g^*b\omega$  - closed set in (X,  $\tau_1$ ,  $\tau_2$ ). Then A is  $\tau_j$  - b - closed if and only if  $\tau_j$  - bcl(A) \ A is  $\tau_i$  - gs - closed in (X,  $\tau_1$ ,  $\tau_2$ ).

**Proof:** Suppose that A is (i, j) - g\*b $\omega$  - closed. Let A be  $\tau_j$  - b - closed. Then  $\tau_j$  - bcl(A) = A. Therefore  $\tau_j$  - bcl(A) \ A =  $\varphi$  is  $\tau_i$  - gs - closed in (X,  $\tau_1$ ,  $\tau_2$ ). Copyright to IJIRSET <u>www.ijirset.com</u> 12772



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 5, May 2014

Conversely, suppose that A is (i, j) -  $g^*b\omega$  - closed and  $\tau_j$  - bcl(A) \ A is  $\tau_i$  - gs - closed. Since A is (i, j) -  $g^*b\omega$  - closed,  $\tau_j$  - bcl(A) \ A contains no nonempty  $\tau_i$  - gs - closed set (by Theorem 3.32). Since  $\tau_j$  - bcl(A) \ A is  $\tau_i$  - gs - closed,  $\tau_j$  - bcl(A) \ A =  $\varphi$ . Then  $\tau_i$  - bcl(A) = A. Hence A is  $\tau_i$  - b - closed.

**Theorem 3.34** Let A and B be subsets of  $(X, \tau_1, \tau_2)$  such that  $A \subseteq B \subseteq \tau_j$  - bcl(A). If A is (i, j) - g\*b $\omega$  - closed then B is (i, j) - g\*b $\omega$  - closed.

**Proof:** Let A and B be subsets such that  $A \subseteq B \subseteq \tau_j$  - bcl(A). Suppose that A is (i, j) - g\*b $\omega$  - closed. Let  $B \subseteq U$  and U be  $\tau_i$  - gs - open in  $(X, \tau_1, \tau_2)$ . Then  $A \subseteq U$ . Since A is (i, j) - g\*b $\omega$  - closed,  $\tau_j$  - bcl(A)  $\subseteq U$ . Since  $B \subseteq \tau_j$  - bcl(A),  $\tau_j$  - bcl(B)  $\subseteq \tau_j$  - bcl(A)] =  $\tau_j$  - bcl(A)  $\subseteq U$ . Therefore B is (i, j) - g\*b $\omega$  - closed.

**Remark 3.35** In general an  $(i, j) - g^*b\omega$  - closed set need not be equal to an  $(j, i) - g^*b\omega$  - closed set.

**Example 3.36** consider  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Then the subsets  $\{a\}$  and  $\{a, c\}$  are (1, 2) -  $g^*b\omega$  - closed but not (2, 1) -  $g^*b\omega$  - closed.

**Theorem 3.37** If  $\tau_1 \subseteq \tau_2$  in  $(X, \tau_1, \tau_2)$  then  $G^*b\omega C(2, 1) \subseteq G^*b\omega C(1, 2)$ .

**Proof:** Let  $A \in G^*b\omega C(2, 1)$ . Let  $U \in GSO(X, \tau_1)$  such that  $A \subseteq U$ . Since  $GSO(X, \tau_1) \subseteq GSO(X, \tau_2)$ ,  $U \in GSO(X, \tau_2)$ . Since A is  $(2, 1) - g^*b\omega$  - closed,  $\tau_1 - bcl(A) \subseteq U$ . Since  $\tau_1 \subseteq \tau_2, \tau_2 - bcl(A) \subseteq \tau_1 - bcl(A)$ . Thus  $\tau_2 - bcl(A) \subseteq U$ . Hence A is  $(1, 2) - g^*b\omega$  - closed. That is,  $A \in G^*b\omega C(1, 2)$ .

The converse of the above theorem need not be true as seen from the following example:

**Example 3.38** Let X = {a, b, c} with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . Then  $G^*b\omega C(2, 1) \subseteq G^*b\omega C(1, 2)$  but  $\tau_1 \not\subseteq \tau_2$ .

#### IV. (i, j) - g\*bω - OPEN SETS

In this section,  $(i, j) - g^*b\omega$  - open sets in bitopological spaces is introduced and their properties are studied.

**Definition 4.1** A set A of a bitopological space  $(X, \tau_1, \tau_2)$  is called (i, j) - generalized star b omega open (briefly, (i, j) - g\*b $\omega$  - open) if its complement is (i, j) - g\*b $\omega$  - closed.

The set of all (i, j) - g\*b $\omega$  - open sets in (X,  $\tau_1$ ,  $\tau_2$ ) is denoted by G\*b $\omega$ O(i, j).

**Theorem 4.2** A subset A of a bitopological space  $(X, \tau_1, \tau_2)$  is  $(i, j) - g^*b\omega$  - open if and only if  $F \subseteq \tau_j$  - bint(A) whenever  $F \subseteq A$  and F is  $\tau_i$  - gs - closed in  $(X, \tau_1, \tau_2)$ .

**Proof:** Suppose that A is (i, j) -  $g^*b\omega$  - open. Let  $F \subseteq A$  and F be  $\tau_i$  - gs - closed. Then  $A^c \subseteq F^c$  and  $F^c$  is  $\tau_i$  - gs - open. Since  $A^c$  is (i, j) -  $g^*b\omega$  - closed,  $\tau_j$  - bcl( $A^c$ )  $\subseteq F^c$ . Since  $\tau_j$  - bcl( $A^c$ ) = [ $\tau_j$  - bint(A)]^c, [ $\tau_j$  - bint(A)] $^c \subseteq F^c$ . Hence  $F \subseteq \tau_j$  - bint(A).

www.ijirset.com



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 5, May 2014

Conversely, suppose that  $F \subseteq \tau_j$  - bint(A) whenever  $F \subseteq A$  and F is  $\tau_i$  - gs - closed in  $(X, \tau_1, \tau_2)$ . Let U be  $\tau_i$  - gs - open in  $(X, \tau_1, \tau_2)$  and  $A^c \subseteq U$ . Then  $U^c$  is  $\tau_i$  - gs - closed and  $U^c \subseteq A$ . Hence by assumption  $U^c \subseteq \tau_j$  - bint(A). That is  $\tau_j$  - bcl( $A^c$ )  $\subseteq$  U. Therefore  $A^c$  is (i, j) - g\*b $\omega$  - closed. Hence A is (i, j) - g\*b $\omega$  - open.

**Theorem 4.3** If a subset A is  $(i, j) - g^*b\omega$  - closed in  $(X, \tau_1, \tau_2)$  then  $\tau_j - bcl(A) \setminus A$  is  $(i, j) - g^*b\omega$  - open.

**Proof:** Suppose that A is (i, j) -  $g^*b\omega$  - closed in (X,  $\tau_1, \tau_2$ ). Let  $F \subseteq \tau_j$  - bcl(A) \ A and F be  $\tau_i$  - gs - closed. Since A is (i, j) -  $g^*b\omega$  - closed,  $\tau_j$  - bcl(A) \ A does not contain nonempty  $\tau_i$  - gs - closed sets (by Theorem 3.32). Hence  $F = \varphi$ . Thus F  $\subseteq \tau_j$  - bint[ $\tau_j$  - bcl(A) \ A]. Hence  $\tau_j$  - bcl(A) \ A is (i, j) -  $g^*b\omega$  - open.

**Theorem 4.4** If a set A is (i, j) -  $g^*b\omega$  - open in (X,  $\tau_1, \tau_2$ ) then G = X whenever G is  $\tau_i$  - gs - open and  $\tau_j$  - bint(A)  $\cup$  A<sup>c</sup>  $\subseteq$  G.

**Proof:** Suppose that A is (i, j) - g\*b $\omega$  - open in (X,  $\tau_1$ ,  $\tau_2$ ), G is  $\tau_i$  - gs - open and  $\tau_j$  - bint(A)  $\cup$  A<sup>c</sup>  $\subseteq$  G. Then G<sup>c</sup>  $\subseteq$  { $\tau_j$  - bint(A)  $\cup$  A<sup>c</sup>}  $\subseteq$   $= \tau_j$  - bcl(A<sup>c</sup>)  $\setminus$  A<sup>c</sup>. Since A<sup>c</sup> is (i, j) - g\*b $\omega$  - closed,  $\tau_j$  - bcl(A<sup>c</sup>)  $\setminus$  A<sup>c</sup> contains no nonempty  $\tau_i$  - gs - closed set in (X,  $\tau_1$ ,  $\tau_2$ ) (by Theorem 3.32). Therefore G<sup>c</sup> =  $\varphi$ . Hence G = X.

**Remark 4.5** The converse of the above theorem is not true in general as can be seen from the following example:

**Example 4.6** Let  $X = \{a, b, c\}$  with the topologies  $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$  and  $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let  $A = \{c\}$  and G = X. Then G is  $\tau_1 - gs$  - open,  $\tau_2$  - bint(A)  $\cup A^c = \phi \cup \{a, b\} = \{a, b\} \subseteq G$ , but  $A = \{c\}$  is not (1, 2) -  $g^*b\omega$  - open.

**Theorem 4.7** Let  $(X, \tau_1, \tau_2)$  be a bitopological space. If  $x \in X$  then singleton  $\{x\}$  is either  $\tau_i$  - gs - closed or (i, j) - g\*b $\omega$  - open.

**Proof:** Let  $x \in X$  and suppose that  $\{x\}$  is not  $\tau_i$  - gs - closed. Then  $X \setminus \{x\}$  is not  $\tau_i$  - gs - open. Consequently, X is the only  $\tau_i$  - gs - open set containing the set  $X \setminus \{x\}$ . Therefore  $X \setminus \{x\}$  is  $(i, j) - g^*b\omega$  - closed. Hence  $\{x\}$  is  $(i, j) - g^*b\omega$  - open.

#### V. CONCLUSION

In this research, we introduce the concept of  $g^*b\omega$  - continuous, closed maps in these spaces and present some results.

#### REFERENCES

- 1. Abo Khadra, A.A. and Nasef, A.A., On extension of certain concepts from a topological space to a bitopological space, *Pro. Math. Phys. Soc. Egypt*, 79, 91 102, 2003.
- 2. Alswidi, L.A. and Alhosaini, A.M.A., Weak forms of  $\omega$  open sets in Bitopological spaces and connectedness, *European Journal of Scientific Research*, 52(2), 204 212, 2011.
- Arockiarani, I., Balachandran, K. and Ganster, M., On regular generalized locally closed sets and RGL continuous functions, *Indian J. Pure. Appl.* Math., 28, 661 - 669, 1997.
- 4. Bose, S. and Sinha, D., Almost open, almost closed,  $\theta$  continuous and almost compact mappings in bitopological spaces, *Bull. Calcutta Math. Soc.*, 73, 345 354, 1981.
- 5. Fukutake, T., On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35, 19 28, 1986.
- Fukutake, T., Sundaram, P. and Nagaveni, N., On Weakly generalized closed sets, Weakly generalized continuous maps and T<sub>wg</sub> spaces in bitopological spaces, *Bull. Fukuoka Univ. Ed. Part III*, 48, 33 - 40, 1999.
- 7. Jelic, M., A decomposition of pairwise continuity, J. Inst. Math. Comp. Sci., 3, 25 29, 1990.
- 8. Kelly, J.C., Bitopological spaces, Proc. London Math. Soc., 13, 71 89,1963.
- 9. Khedr, F.H. and Hanan S. Al Saddi., On pairwise semi generalized closed sets, JKAU: Sci., 21, (2), 269 295, 2009 A.D/1430 A.H.

Copyright to IJIRSET



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 5, May 2014

- 10. Maheswari, S.N. and Prasad, R., Semi open sets and semi continuous functions in bitopological spaces, Math Notae, 26, 29 37, 1977 78.
- 11. Parvathi, A., Priyadharsini, P. and Chandrika, G.K., On g\*bω closed sets in Topological spaces, Int. J. adv. Sci. tech. research, 2(6), 318 329, 2012.
- 12. Selvanayaki, N., On g\*s closed sets in Bitopological Spaces, Int. J. Math. Archive, 3(5), 1991 1995, 2012.
- 13. Sheik John, M. and Sundaram, P., g\* closed sets in bitopological spaces, *Indian J. Pure. Appl. Math.*, 35(1), 71 80, 2004.
- 14. Vadivel, A. and Swaminathan, A., g\*p closed sets in bitopological spaces, *J. Advance Studies in topology*, 3(1), 81 8, 2012.
- 15. Veronica, V. and Reena, K., g<sup>#</sup>s closed sets in Bitopological Spaces, Int. J. Math. Archive, 3(2), 556 565, 2012.