
ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

            International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

            Vol. 2, Issue 2, February  2013 

 

                  Copyright to IJAREEIE                                               www.ijareeie.com                                                                     827          

 

A Noval Solution of Implementation Issues of Kalman 

Filter for Tracking the Targets  
Beena M Varghese

1
, Sija Gopinathan

2
, Daisykutty Abraham

3
 

1
Associate Professor, Dept.EEE, M A College of Engineering, Kothamangalam, Kerala, India  

2
 Assistant   Professor, Dept.EEE, M A College of Engineering, Kothamangalam, Kerala, India  

3
Professor, Dept.EEE, M A College of Engineering, Kothamangalam, Kerala, India  

 

ABSTRACT: The Kalman filter gives a linear, unbiased and minimum error variance recursive algorithm to optimally estimate the 

unknown state of a system from noisy data taken at discrete real-time. This paper present the practical aspects of implementing 
Kalman filter estimator applied to time varying stochastic non-linear models. The conventional implementation of the Kalman filter is 
particularly sensitive to round off errors, errors in the linearization process and ill conditioning in connection with matrix inversion. 
To reduce the complexity, the methods based on UD factorizations, aiming to simplify the update of the sate co-variance matrix 
P=UDUT. During the update of P, there is no need to find the FK , the Jacobian of the state transition matrix. Simulation of linear non 
linear target trajectory is performed using MATLAB R2009b. The result shows that the relative improvement in the convergence 
achieved using the UD factorization method. 
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I. INTRODUCTION 

The Kalman Filter represents one of the most widely applied and demonstrably useful tool, to emerge from the state variable 
approach of “Modern control theory”[1]. The Kalman filter is a prediction filter.  Put in simple terms, the filter extracts the 
noise free measurements from a set of erroneous measurements, by estimating the state of the plant, whose parameters are 
measured. In doing so it tries to minimize the difference between the measurements and an estimate of the measurements. In 
fact, the original proposition by Gauss regarding the estimation by the method of least squares becomes the Kalman Filter, when 
the minimization problem, as given by Gauss, is given a recursive solution [Gauss to Kalman].  It is often observed that for 
linear systems, the deterministic theory based on mean square estimation and the probabilistic estimation theory are equivalent.   

II. THEORY OF KALMAN FILTER 

  As illustrated in Fig.1 consider a system represented by the dynamic equation  

x(k+1) = f(x(k) + w(k)                                       (1) 

where f() is a nonlinear function that explains the state transition of the a system represented by the sate x(k) (w(k)  is the plant 
noise, assumed to be Gaussian).  A measurement device gets a set of measurements regarding the plant given  

   z(k) = h(x(k)) +  (k),                                        ( 2) 

where h () is a non linear function that transforms the state into the measurements. In other words, the measurements can be 

spelt out in terms of the state.   (k) is the measurement noise, which is also normally distributed.  Given the measurement x(k) 
at time k, the filter updates the state x(k) in terms of the difference between the current measurement and  an estimate  of  the 
measurement made on the basis of  the past (k-1) estimates. 

 

 

 

 

 

 

                           Fig.1 Block diagram of computational scheme 

h 

 

zk 

x(k) 
LK +

      

f (xk) 

z
-1

 
x(k-1) h(x(k-1)) 

+ 

     

http://www.ijareeie.com/


ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

            International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

            Vol. 2, Issue 2, February  2013 

 

                  Copyright to IJAREEIE                                               www.ijareeie.com                                                                     828          

 

  x(k) = x(k-1) + L(k)[ z(k) – h(x(k-1))]                             (3) 

L(k) is the Kalman gain, computed from the co-variance of the state vector and the Jacobean of the vector  functions f 
and h. The updated state undergoes a temporal update using Eq. 1 generating x(k+1), which become the candidate for 
estimating the measurement at time  k+1. As the filter converges, the variance of residual z(k) – h(x(k-1)) , remains bounded to 
specified limits. 

III. EXTENDED KALMAN FILTER 

A. Introduction 

     Well-known method for estimation of state in linear systems with correlated noise is the extended Kalman filter, 
where the unknown parameters are estimated as a part of an enlarged state vector. In Extended Kalman Filter to estimate the 
state, by modelling the systems by state equations where the state consists of the system and noise parameters while the 
corresponding output, input and computed residuals are collected in the observation matrix of the state equations. The Kalman 
Filter requires an initial state for each object, and that initial state estimate must be obtained by detecting it. The system state 
vector  xk  is assumed to be describing a dynamic system having the form, 

                                   kkk w )(1 xfx   

and the measurements are described in a form 

                                   kkk v )(xhz  

 where wk represents a white noise sequence vk represent the measurement errors that occur at each observation time. Suppose m 
measurement quantities are available at discrete instants of time and are denoted at each time tk as zk . Due to the measurement 
noise vk there is a difference between the observed value and estimated value and is called the residual. The residual associated 
with the k

th
 measurement is rk = zk-h (x

^
k/k-1) where h (x(k/k-1)) is the estimate of the state by using previous measurement. 

The estimate is given as the linear combination of estimate predicted in the absent of new data and the residual rk. Thus, the 
mean square estimate is  x

^
(k/k) = x

^
(k/k-1)  + L (k) [ zk – h (x

^
k/k-1)] where L (k) is the Kalman filter gain. State updating or to 

obtain an approximate state at tk+1 is x(k+1,k)= f (x
^
(k/k)) where, f is the state transition function. Fig.1 illustrates the structure 

of Kalman filter.  As the filter converges, the state sequence will represent the plant behaviour and the estimated measurement 
shall be free from noise. Also, the mean value of residual would to zero. 

B. Discrete kalman Filter Structure 

   The Kalman filter provides an estimate of the state of the system at the current time based on all measurements of the system 

obtained up to and including the present time. 

The system that is considered is composed of two equations  

1. State equation:  

G(k)w(k)k)f(x(k),1)x(k   

Where x (k) = n-dim state vector at time k,f(x (k), k) = n-dim continuously differentiable vector function 

G (k) = n*p  random noise matrix, w(k) = p-dim state disturbance 

2.  Observation (measurement) model: 

        Suppose that m measurement quantities are available at discrete instants of time and are denoted at each time tk as zk .    

)v(kk)h(x(k),z(k)   

where, z = m-dim measurement vector, h (x(k),k] = m-dim continuously differentiable vector function 

v(k) = m-dim measurement noise process 

     {wk}and{vk}represent independent white-noise sequences. The initial state x0 has a mean value x
^
0/-1 and covariance matrix 

P0/-1 and is independent of the plant and measurement noise sequence. The noise sequences have zero mean and second-order 

statistics described by 

 E [vkvj
T
] = Rkkj ,E [wkwj

T
] = Qkkj    E [vkwj

T
] = 0 for all k, j.   Also E [vkx

T
(0)] = 0       

 E [wkx
T
(0)] = 0 for k  0 
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    Expand nonlinear functions f (x(k-1), k-1), and h (x (k), k) in a Taylor series about the conditional means x
^
 (k -1/ k -1) and x

^
 

(k / k -1) as 

)1,1()1(1)x(k

1)]k1,-f[x(k
1)F(k






kkxkx     

Similarly,  

1)(k/kxx(k)x(k)

k)]h[x(k),
1)H(k




      

 approximate dynamical models become  

1)U(k1)1)w(kG(k1)1)x(kF(kx(k)   

Y(k)v(k)H(k)x(k)z(k)   

Where U (k-1) and Y (k) are calculated on-line from equations 

1)1/k(k1)xF(k1)k1,1/k(kf(x1)U(k  
 

1)(k/kH(k)xk)1,(k/kh[xY(k)  
 

             An estimate x
^
(k/k) of the state x(k) is to be computed from the data z0, z1… zk so as to minimize the mean square error 

in the estimate. An estimate x
^
k/k is referred to as the filtered estimate of x(k) and is a linear combination of an estimation at  tk-1 

and the measurement data z(k). 

1)z(k/kL(k)[z(k)k)1,(k/kx(k/k)x 


                     (4) 

where  x
^
(k/k-1) is an estimate at tk by using tk-1 measurements 

1)U(k1)(k/k1)xF(k1)(k/kx  
 

                = f[x
^
 (k-1/k-1), k-1]  

  L(k) is the Kalman filter gain 
1TT R(K)](k)1)HK/k(k)[H(k)P(1)HP(k/kL(k)  Where P(k/k-1) is covariance of the error in the predicted estimate and 

given by 

1)(k1)G1)Q(kG(K1)(k1)F1/k1)P(kF(k1)P(k/k TT   P(k/k)is the updated state covariance of the error in the 

estimate x
^
(k/k) given by 

1)k/kL(k)H(k)P(1)P(k/kP(k/k) 
 

Q(k) is the plant noise covariance matrix 

Rk is the measurement noise covariance matrix 

Initialization is provided by 

P(0/-1) = P0 

x
^
(0/-1) = x0 

z
^
(k/k-1)  is predicted measurement using updated state  

x
^
 (k/k-1) 

z
^
(k/k-1)  = H(k) x

^
(k/k-1)  + h[x

^
(k/k-1),k] - H(k) x

^
(k/k-1)  

                = h[x(k/k-1),k] 

Equation (4) becomes 

k]1),(k/kh[xL(k)[z(k)k)1,(k/kx(k/k)x  


 

State updating OR to obtain an approximate state at t k+1 is  

x(k+1,k) = f (x
^
(k/k))   where, f  is the transition function 

At k
th

 step, following parameters are computed for estimation: 

        Assume initial conditions: E (x0) = x^0 and  E (x0x0
T
) = P0 
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1.    Compute P (k) using P (k-1), F (k-1) and Q (k-1)      

2.    Compute H (k) using updated state. x^(k/k-1) 

3.    Compute L (k) using P (k) (computed in step 1), H (k) and R (k) 

4. Compute P (k/k) using L (k) (computed in step 3) and P (k) (computed in step 1) 

5. Compute successive values of state recursively, i.e. x^(k/k), using the computed values of L (k), the previous estimated 

state and the input data z (k) 

6. Update the state x (k+1/k), using F (k) and x^(k/k)   

C        Bierman UD Factorization 

         The system that is considered is composed of two equations  (1) & (2). 

  By using the modified Cholesky decomposition technique, P is factored in the form    P = UDU
T
 where D is a diagonal matrix 

and U is an upper triangular matrix. Initial value U is a identity matrix and D is P0 itself.Consider a single scalar observation 

kkk v )(xhz
 

Let n is the dimension of the state vector. At the k
th

 step, 

1. Compute
TT H(k)U(k)V(k)   Where V is an n-vector, and n is the dimension of the state vector.  

2. Compute D(k)V(k)]V(k)[Rkσ(k) T (a scalar) 

3. Compute Kalman gain 
1)1k)σ)σU(k)D(k)V(L(k)   

4. Compute B(k) using V(k),D(k) and the measurement noise variance σ 

                 
1T 1)σ(kk)D(k)V(k)V(B(k)   

4.     Update  the U and D matrix  by using B(k) computed in step 3. 

            U(k)B(k)1)U(k                  
11)σ)σ(D(k) σ(k1)D(k   

5.    Compute successive values of state    recursively, i.e. x^(k/k), using the   computed   

               values of L (k), the previous estimated    state and the input data z (k) 

               ]k1),(k/kh[xL(k)[z(k)k)1,(k/kx(k/k)x  


  

6. State updating OR to obtain an    approximate state at t k+1 is    x(k+1,k) = f(x
^
(k/k))         where, f  is the transition function                       

 In UD Factorization method, the covariance matrix P is updated   by updating U and D factors. These forms of the covariance 

update take advantage of diagonal and symmetric matrix forms to make the implementation more efficient 

D.     Design of Kalman Filter Illustration 

     1) For Linear Path:  Let us consider tracking of a target in a xy plane and going in a straight line.. To develop techniques for 

estimating state variables x1 (position along x axis at time k+1), x2 (velocity along x axis at time k+1), y1 (position along y axis at 

time (k+1)  y2 (velocity along x axis at time (k+1) based up on  measurements at time k+1 ( rang and azimuth angle) when target 

dynamics are liner and  measurement equations are nonlinear. The nonlinear measurement equations make this estimation 

problem a nonlinear filtering problem in which best state estimate is conditional mean x(k+1/k+1).  

Now we can define a state vector x that consists of position and velocity. 











k

k

v

p
x(k)  

   

T = Track update time 

 w(k) = 2-dim zero mean white Gaussian process with covariance 

E[w(k)w
T
(k)] = Q(k) (k-j) 
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Q(k) = 2
     

   Let assume 2
    =4          

  w(k) represents uncertainty in the target  acceleration due to atmospheric condition. 

Radar  measurements of range and azimuth angle are given by 

    
v(k)

)(y(k)/x(k)tan

kykx

θ(k)

r(k)
z(k)

1

2
1

22





























                

v (k)  is a two dimensional zero–mean white Gaussian process with covariance, 















 rad

m
kR

2

2

100

010
)(  

Initial state is assumed to be an n-dimensional Gaussian random vector with zero-mean and covariance 





















2000000

0100000

0020000

0001000

)0(p  

The platform trajectory is described by the    following equations                                                                

x(k+1) = x1(k)  +  T  x2(k) and  y(k+1) =  y1(k)  + T y2(k)
 

where 

x1(0) = 25,000m    x2(0) = -400 m/s 

y1(0) = 25,000m  y2(0) = +400m/s   T  = 0.1 s 

The Jacobian of the measurement equation is determined as follows: 

                            

  x(k) = [x1(k)   x2(k)      y1(k)      y2(k)  ]
 T     

 

 

1)-(k/k x̂=   x(k)x(k)

k)]h[x(k),
H(k)




     and         1)k1,(kx1)x(k1)x(k

1)]k1,f[x(k
1)F(k




 

    

                          

Simulation of the extended Kalman filter for linear target tracking is shown in the accompanying Fig.(2).  Fig. (2.a) shows the 

actual linear track of the object. Fig. (2.b) shows the track when the noise is added with the actual measurements.. Fig. (2.c) 

shows the output of the Kalman filter.. Fig (2.d) shows error (innovation) in the predicted states. Fig.(2.e) shows the output of 

the UD filter. UD factorization method generates the states correctly. Fig.(2.f) shows the residual variation in the estimated 

value. 
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2) For non-Linear Path:   

 The Vander pol’s equation is a second order system and described by the equation at critical condition =1 is 

    0(t)y(t)(t))yy(1(t)y 12
2

1 
  

   and step size h =   0.09 

Let y1(t) be denoted by x2(t)  &  y2(t) by x1(t). Then the equation becomes 

   (k)hx(k)(k))xxh(1(k)x1)(kx 21
2
211   

      (k)hx(k)x1)(kx 122   

Assume initial values 

            x0 = [-2 1], and    Step size   h = 0.09; 

        Initial state is assumed to be an n-dimensional Gaussian random vector with zero-mean and covariance                      

  𝑃0 =  
0.5 0
0 0.5

  

           The Jacobian of the measurement equation is determined as follows:   

  Hk  =[0    1]  where h2  =  x2         and    𝐹 𝑘 − 1 =  
1 + ℎ(1 − 𝑥2

2(𝑘)) −ℎ

ℎ 1
     

 

    Simulation result of the extended Kalman filter for this target trajectory are shown in the Fig.(3).  Fig. (3.a) shows the actual 

trajectory of the object. Fig. (3.b) shows the track when the noise is added with the actual measurement data. This is the input of 

the Kalman filter. Fig.(3.c) shows the estimated trajectory. Fig.(3.d) shows the error(residual). Fig.(3.e) shows the output of the 

UD filter.. Fig.(3.f) shows the residual variation in the estimated value.   
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IV. CONCLUSION                               

This work presents the practical aspects of implementing Kalman filter estimator applied to time varying stochastic 

non-linear models. The Kalman filter has found application in the tracking and  navigation of all sorts of vehicles, and in 

predictive design of estimation and control systems. The UD Kalman filtering algorithm is considered efficient, stable and 

accurate for real time applications.  In UD Factorization method, the covariance matrix P is updated   by updating U and D 

factors. These forms of the covariance update take advantage of diagonal and symmetric matrix forms to make the 

implementation faster. This is one of the main advantages of the UD factorization method.  
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