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Abstract: This paper presents a performance analysis of three categories of adaptive filtering algorithms in the application of linear prediction. The classes of 

algorithms considered are Least-Mean-Square (LMS) based, Recursive Least-Squares (RLS) based and Lattice based adaptive filtering algorithms. The 

performances of the algorithms in each class are compared in terms of convergence behavior, execution time and filter length. The analysis determines the best 

converging algorithm from each class. Finally the best performing algorithm for adaptive linear prediction is selected.  
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INTRODUCTION  

Linear prediction has been popularly employed in a wide 
range of applications, ranging from geological and 
seismological applications to radar and sonar, to speech 
analysis and synthesis and to computer music. This technique, 
first used for speech analysis and synthesis, has produced a 
very large impact on every aspect of speech research. The 
importance of linear prediction stems from the fact that the 
wave and spectrum characteristics can be efficiently and 
precisely represented using a very small number of 
parameters. Various adaptive algorithms are available to be 
used in linear prediction. While using these algorithms the task 
is to estimate the filter response in such a way that for a given 
input signal, its output tracks a desired response signal in an 
optimal way. The performance of these adaptive algorithms is 
highly dependent on the filter order, signal condition and some 
other parameters. Selection of these parameters can have 
strong impact on the performance of the algorithms as well as 
on the application for which the algorithm is being used. So a 
careful selection of adaptive algorithms and the parameters to 
be used in the algorithm is necessary. This paper presents a 
comparative performance study of seven widely used adaptive 
algorithms as applied to the area of linear prediction. These 
algorithms fall in three classes which are LMS based, RLS 
based and Lattice based algorithms. Three performance criteria 
are utilized in this study which are algorithm execution time, 
convergence speed and the required filter order. Each 
algorithm is analyzed by executing it using four different types 
of input signals, by changing the filter order and by different 
convergence parameters. For different types of input signals, 
different filter orders and different convergence parameters, 
the convergence speeds are measured. After analyzing all the 
algorithms, their convergence performances are compared. 
Finally the best performing algorithm is determined for 
adaptive linear prediction. 

 

LINEAR PREDICTION 

One of the most discussed problems in time-series analysis is 

to predict a future value of a stationary discrete-time stochastic 

process, given a set of past samples of the process. Linear 

prediction is a mathematical operation where future values of a 

discrete-time signal are estimated as a linear function of 

previous samples [1]. To be specific, consider the time series 

u(n), u(n - 1), …, u(n - M), representing (M + 1) samples of 

such a process up to and including time n. Using  the samples 

u(n - 1), u(n – 2), …, u(n - M), the operation, prediction makes 

an estimate of u(n). Let Un-1 denote the M-dimensional space 

spanned by the samples u(n - 1), u(n – 2), …, u(n - M), and let 

us use û (n | Un-1) to denote the predicted value of  u(n)., given 

this set of samples. In linear prediction, the predicted value 

u(n) is expressed as a linear combination of the samples u(n - 

1), u(n – 2), …, u(n - M). This operation corresponds to one-

step prediction of the future, measured with respect to time n-1 

and this form of prediction is referred to as one-step linear 

prediction in the forward direction or, simply, forward linear 

prediction. There is another form of prediction in which the 

samples u(n), u(n - 1), …, u(n - M + 1) are used to make a 

prediction of the past samples u(n - M). This second form of 

prediction is referred to as backward linear prediction.  
 

Adaptive Linear Prediction 

An adaptive linear prediction system [2] includes an input 
signal vector with elements x0, x1, …, xL, a corresponding set 

of weights, w0, w1, …, wL and a summing unit Σ. Equation 1 
illustrates the adaptive linear prediction. 
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If X = [x0 x1 … xL ]

T denotes the input signal vector and W = 
[w0 w1 … wL ]T denotes the corresponding adaptive weighted 
vector, where XT denotes the transpose of X, then y = WT X and 
the elements of  W are adaptively determined by some 
adaptive mechanism. The function of the adaptive filter is to 
provide the best prediction of the present value of a signal. The 
present value of the signal serves the purpose of the desired 
response for the adaptive filter and the past values of the signal 
supply the input applied to the filter. Depending on the 
application of interest, the adaptive filter output or the 
prediction error may serve as the system output. 
 

ADAPTIVE FILTERING ALGORITHMS 

We use three LMS based algorithms, three RLS based 
algorithms and a Lattice based algorithm for our analysis. 

LMS-based Algorithms 

There are a number of algorithms for adaptive filters which are 
derived from the conventional LMS algorithm. The objective 
of the alternative LMS- based algorithms is either to reduce 
the computational complexity or the convergence time. Three 
algorithms are taken from the first category: Adjoint LMS 
(ADJLMS), sign-data LMS (SDLMS) and sign-error LMS 
(SELMS) adaptive filtering algorithm. 
 
Adjoint LMS Algorithm:  Adjoint LMS algorithm [3] is 
defined as a simple alternative to the popular Filtered-X LMS 
algorithm. In Adjoint LMS algorithm, the error is filtered 
through an adjoint filter of the error channel. Equation 2 and 3 

specifies Adjoint LMS.  

   

  
(2) 

  

   
(3)   

In case of Adjoint LMS, the error rather than the input is 
filtered by the channel model. (M2 is the order of the FIR 
channel model. Furthermore, the filtering is through the 
Adjoint channel model. While Adjoint-LMS is still a 
stochastic gradient descent algorithm, it is not based on the 
instantaneous gradient. Adjoint LMS stochastically updates 
filter weights based on this new expansion which leads to the 
more computationally efficient form. In fact, an advantage of 
the algorithm is that it can be generalized to when both the 
primary filter and channel are modeled with nonlinear filters. 
In case of linear prediction, the filter implementing Adjoint 
LMS algorithm will take as input a delayed version of the 
desired signal and the output will be an estimate of the actual 
signal. 
 
Sign-data LMS Algorithm:  An alternative way to simplify the 
computational burden of LMS algorithm is to apply 
quantization to the data vector x(k). One possible quantization 
scheme is to apply the sign function to the input signals, 
giving rise to the sign-data algorithm [4] whose coefficient 
updating is performed as  
 

w(k+1) = w(k) + 2µ e(k) sgn[x(k)]                                      (4) 
 
Here the sign operation is applied to each element of the input 
vector. The quantization of the data vector can lead to a 

decrease in the convergence speed and possible divergence. In 
the LMS algorithm, the average gradient direction follows the 
true gradient direction (or steepest–descent direction) [5], 
whereas in the sign-data algorithm only a discrete set of 
directions can be followed. Sign-data algorithm is stable for 
Gaussian inputs and, as such, has been found useful in certain 
applications. In case of linear prediction, the filter 
implementing sign-data LMS algorithm will take as input a 
delayed version of the desired signal and the output will be an 
estimate of the actual signal. 
 
Sign-error LMS Algorithm: The sign-error algorithm [6] 
utilizes the sign function as the error quantizer, where the 
coefficient vector updating is performed by 
 

w(k+1) = w(k) + 2µ sgn[e(k)] x(k)                                      (5) 
 
The sign-error algorithm has the property that under certain 
general assumptions the weight vector it produces becomes 
clustered around the optimum weight vector in terms of 
minimizing the mean absolute estimation error. For a 
sufficiently small adaptation step size parameter, the 
asymptotic mean absolute estimation error can be made to be 
as close as desired to the minimum possible [7]. In case of 
linear prediction, the filter implementing sign-error LMS 
algorithm will take as input a delayed version of the desired 
signal and the output will be an estimate of the actual signal. 
 

RLS-based Algorithms 

We considered two important square-root adaptive filtering 
algorithms for RLS estimation which are QR-decomposed 
RLS (QR-RLS) algorithm and inverse QR-RLS algorithm. 
Our motivation of using QR decomposition in adaptive 
filtering is to exploit its good numerical properties.  
 
QR-decomposition RLS  Algorithm:  The QR-decomposition 
RLS algorithm [8] accomplishes the computation of the least-
squares weight vector in a finite-duration impulse response 
(FIR) filter implementation of the adaptive filtering algorithm 
by working directly with the incoming data matrix via the QR 
decomposition rather than working with the (time-average) 
correlation matrix of the input data as in the standard RLS 
algorithm. Accordingly, the QR-RLS (QR-decomposition 
RLS) algorithm is numerically more stable than the standard 
RLS algorithm. In case of linear prediction, the filter 
implementing QR-decomposition RLS algorithm will take as 
input a delayed version of the desired signal and the output 
will be an estimate of the actual signal. 
 
Sliding-Window FTF  Algorithm:  The FTF [9] algorithm 
solves the recursive least-squares problem by exploiting the 
time-shift invariance property of the input data. An attractive 
feature of FTF algorithm is that it permits direct computation 
of the coefficients of a transversal filter model. Unfortunately 
when the FTF algorithm is implemented in finite-precision 
arithmetic, numerical errors may cause the algorithm to 
diverge. The numerical divergence is necessarily preceded by 
the algorithm losing its least-squares character. In case of 
linear prediction, the filter implementing Sliding Window FTF 
algorithm will take as input a delayed version of the desired 
signal and the output will be an estimate of the actual signal. 
 
Householder RLS  Algorithm:  The RLS algorithm computes 
the updated estimate of the vector at iteration n upon the 
arrival of the new data, given the least squares estimate of the 
tap-weight vector of the filter at iteration n – 1. Householder 
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RLS algorithm is a variation of RLS algorithm involving 
householder transformation. In case of linear prediction, the 
filter implementing householder RLS algorithm will take as 
input a delayed version of the desired signal and the output 
will be an estimate of the actual signal. 
 

Lattice-based Algorithms 

Lattice Filters [10] are of interest because they offer the fast 
convergence properties of the RLS algorithm with a 
significant reduction in computational complexity for large 
model order adaptive filter applications. Recursive Least 
Squares Lattice Filters have been used for prediction and for 
adaptive filtering due to their modular structure and 
computational efficiency [11]. 
 
The Least Squares Lattice (LSL) Filter:  In case of linear 
prediction, the least squares lattice filter will take as input a 
delayed version of the desired signal and the output will be an 
estimate of the actual signal. 
 

SIMULATION RESULTS 

Simulation result shows how performance of the adaptive 
algorithms in application of linear prediction varies with the 
variations of step-size, filter length and block length (where 
appropriate). Four different types of signals are considered. 
They are: a signal which is a sin wave of 0.015 cycles/sample 
and a cosine of 0.008 cycles/sample, chirp signal, sawtooth 
wave and speech signal. While analyzing, the convergence 
behavior is considered as the criteria for good performance. 
We used MATLAB for our simulation. Firstly, the three LMS-
based algorithms are compared for different types of signals. 
For each type of signal the convergence behavior of the 
algorithms are compared and the best performing algorithm is 
identified. 
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Figure 1: Convergence performances of LMS algorithms for SinCos wave 
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Figure 2: Convergence performances of LMS algorithms for chirp signal 
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Figure 3: Convergence performances of LMS algorithms for swatooth signal 
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Figure 4:  Convergence performances of LMS algorithms for speech signal 

The analysis also identified the filter length and step size 
parameter at which the algorithms converges the best. Table I 
shows the results. 

Table I. Required Filter Length and Step Size Parameter for LMS-based 
Algorithms 

 
Algorithm Filter Length Step Size Execution 

Time 

ADJLMS 12 mu = 0.008 0.9220 

SDLMS 64 mu  = 0.001 0.6310 

SELMS 64 mu = 0.0009 0.6810 

 
If the convergence rate is considered, using the above 
comparison-plots, it comes out that SELMS converges faster 
than the other two. Though SDLMS converges nearly the 
same way as SELMS does for SinCos wave, chirp signal and 
swatooth wave, it converges the worst in case of speech 
signals. Considering these facts, it can be said that SELMS 
performs the best, as applied to the area of linear prediction, 
among the LMS-based algorithms considered in this paper. 
RLS-based algorithms have been analyzed by varying filter 
length, forgetting factor and block length (where appropriate). 
While varying those parameters, it has been attempted to 
identify a range of values of forgetting factor, block length and 
filter length in which the algorithms performs better. A sin 
wave of 0.015 cycles/sample and a cosine of 0.008 
cycles/sample is taken as input signal. 
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Figure 5:  Convergence performances of RLS algorithms for SinCos wave 
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Figure 6: Convergence performances of RLS algorithms for Chirp signal  
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Figure 7:  Convergence performances of RLS algorithms for Swatooth signal 
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Figure 8:  Convergence performances of RLS algorithms for speech signal 

The analysis identified the filter length, forgetting factor and 
block length at which the algorithms converge the best. Table 
II shows the result. 
 

Table II.  Required Filter Length, Forgetting Factor, Block Length for RLS-
based Algorithms 

Algorithm Filter 

Length 

Forgetting 

Factor 

Block 

Length 

Execution 

Time 

HRLS 64 0.99 n/a 6.0590 

QR-RLS 38 0.999 n/a 34.5100 

SWFTF 64 n/a 128 7.4220 

 
The table shows that HRLS is the fastest algorithm among the 
three. The plots above also yield that the convergence 
performances of HRLS and QR-RLS are better than SWFTF. 
Our analysis of RLS-based algorithms concludes with the 
observation that HRLS can be the best choice for linear 
prediction among the RLS-based algorithms considered in 
here. The Lattice-based algorithm is analyzed by varying filter 
length and forgetting factor. We found that LSL converges 
better for higher values of filter length.  Again, this algorithm 
is not significantly affected by varying forgetting factor 
values. But the value 0.99 of forgetting factor shows a bit 
better performance. It needs much less time to execute than 
other algorithms which is 1.2310.  As a result of our analysis 
we have found SELMS from LMS based algorithms and 
HRLS from RLS based algorithms as the best performers for 
linear prediction. SELMS, HRLS and LSL are then compared 
to identify the best one for linear prediction. 
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Figure 9: Performance comparison of SELMS, HRLS and LSL for SinCos 
wave 
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Figure 10:  Performance comparison of SELMS, HRLS and LSL for chirp 

signal 
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Figure 11:  Performance comparison of SELMS, HRLS and LSL for speech 

signal 
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Figure 12:  Performance comparison of SELMS, HRLS and LSL for swatooth 

wave 

We recorded the execution time required for each signal. 

Table III.  Required Execution Times of the Algorithms for All Signals 

Algorithm Execution 

Time (sincos 

wave) 

Execution 

Time (chirp 

signal) 

Execution 

Time 

(swatooth 

wave) 

Execution 

Time 

(speech 

signal) 

SELMS 0.4800 0.5400 0.4310 0.7310 

HRLS 2.7040 2.5030 2.3630 2.4830 

LSL 1.1110 1.1610 1.0510 1.1710 

 
With respect to execution time SELMS require the least. If 
convergence performance is considered, the corresponding 
MSE-plots shown identify SELMS as the best performing 
algorithm. So it is obvious from the simulation result that 
SELMS performs the best when applied to adaptive linear 
prediction. 

CONCLUSION 

 
We perform adaptive linear prediction using seven commonly 
used adaptive filtering algorithms to identify the best 
performing algorithm among the seven. Four different signals 
are tested against the algorithms to observe the convergence 

performance of the algorithms for each signal. The algorithms 
are analyzed in the first place to identify the parameters for 
which they converge the best. It has also been attempted to 
identify the range of the values of the parameters for which the 
algorithms show good convergence performance. Not only the 
convergence behavior, but also the execution time is 
considered while evaluating their performance. After the best 
performing algorithm in each class have been found, their 
convergence performances are compared and finally, the 
algorithm which converges the best as applied to the area of 
adaptive linear prediction is identified. Our simulation 
identified the sign-error LMS algorithm as the best. 
 

REFERENCES 

[1] Atal, B. S., “The history of linear prediction”, Signal 
Processing Magazine, IEEE, vol. 23, Issue 2, March 2006, 
pp. 154–161. 

[2] B. Widrow and S. D. Stearns, Adaptive Signal Processing, 
Englewood Cliffs, NJ:Prentice Hall, 1985. 

[3] Eric A. Wan, “Adjoint LMS: An efficient alternative to 
the filtered-X LMS and Multile Error LMS algorithms”,  
ICASSP96, vol. III, pp. 1842–1845. 

[4] S. C. Douglas, “Exact expectation analysis of the Sign-
Data LMS algorithm for I.I.D. input data”, Proc. 26th 
Asilomar Conference on Signals, Systems and Computers, 
Pacific Grove, CA, vol. 1, pp. 566–570, October 1992. 

[5] Yunseok Choi, Changsoo Shin, Dong-Joo Min and 
Taeyoung Ha, “Efficient calculation of the steepest 
descent direction for source-independent seismic 
waveform inversion: an amplitude approach”, Journal of 
Computational Physics, vol. 208, Issue 2, September 
2005, pp. 455–468. 

[6] Paulo Sergio Ramirez Diniz, Adaptive Filtering: 
Algorithms and Practical Implementation, 2nd ed., 
Springer, 2002. 

[7] A. Gersho, “Adaptive filtering with binary 
reinforcement”, IEEE Transactions on Information 
Theory, vol. IT–30, no. 2, pp. 191–199, March 1984. 

[8] Deepak Boppana, Kully Dhanoa and Jesse Kempa, 
“FPGA based embedded processing architecture for the 
QRD-RLS algorithm”, 12th annual IEEE symposium on 
Field Programmable Custom Computing Machines 
(FCCM’04), pp. 330–331. 

[9] D. T. M. Slock, and T. Kailath, “Numerically stable Fast 
Transversal Filters for Recursive Least Squares Adaptive 
Filtering”, IEEE Trans. Signal Proc., ASSP–39 (1): 92–
114, Jan. 1991. 

[10] B. Friedlander, “Lattice filters for adaptive processing”, 
Proceedings of the IEEE, vol. 70, pp. 829–867, Aug. 
1982. 

[11] J. M. Cioffi and T. Kailath, “Fast, Recursive Least 
Squares Transversal Filters for adaptive filtering”, IEEE 
Transanctions on Acoustics,  Speech and Signal 
Processing, vol. ASSP–32, pp. 304–337, Apr. 1984. 

 

 
 


