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INTRODUCTION
Dagum distribution [1,2] is a well-known and established three-parameters distribution for modeling empirical income and 

wealth data, that could accommodate both heavy tails in empirical income and wealth distributions, and also permit interior 
mode. A random variable X following the Dagum distribution with shape parameters β, δ>0 and scale parameter λ>0 has a 
Cumulative Distribution Function (CDF) given by:

( ) ( ) ( ), , , 1 1DF x x
βδβ δ λ λ

−−= +                                                                                         (1)

The rth raw or non central moments of Dagum distribution are given by:
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for δ>r, and β,δ>0, where B(.,.) is the beta function. The qth percentile of the Dagum distribution is
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Dagum distribution has positive asymmetry, and its hazard rate can be monotonically decreasing, upside-down bathtub 
and bathtub followed by upsidedown bathtub [3], thus overcoming the forms presented by the exponential, gamma and Rayleigh 
distributions for modeling lifetime data. Dagum distribution has been used in several research areas such as economics and 
lifetime data. However, in order to fit still more complex situations, a number of extensions have been proposed in recent years. 
For example, see the works by Domma, Huang Oluyede [4,7] . It is the purpose of this article to propose a new extension of the 
Dagum distribution by compounding the Dagum distribution and the power series distributions. The general class is called the 
Dagum Power Series (DPS) family. We employ the compounding procedure in [8]. The power series family of distributions includes 
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binomial, Poisson, geometric and logarithmic distributions [9]. In the same way, several classes of distributions were proposed 
by compounding some useful lifetime and power series distributions [10-16]. Also, a primary motivation for the development of this 
distribution is the modeling of lifetime data with a diverse model that takes into consideration not only shape, and scale but also 
skewness, kurtosis and tail variation. Also, motivated by various applications of geometric, Poisson and Dagum distributions 
in several areas including reliability, finance and actuarial sciences, as well as economics, where Dagum distribution plays an 
important role in the size distribution of personal income, we construct and develop the statistical properties of this new class 
of generalized Dagum-type distribution called the Dagum-geometric and Dagum-Poisson distributions and apply the models to 
real life data in order to demonstrate the usefulness of the proposed class of distributions. In this regard, we present the special 
cases of the compound new four-parameter distributions, referred to as the Dagum-geometric (DG) and Dagum-Poisson (DP) 
distributions. This paper is organized as follows. In Section 2; we introduce the new family and present a useful representation for 
its CDF and pdf: We discuss in Section 3 four special models of the proposed family. In Section 4 we present a representation for 
the hazard and reverse hazard function for the new family.

Some statistical properties of the new distribution including the quantile function, moments, and conditional moments are 
presented in Section 5. Mean and median deviations, Bonferroni and Lorenz curves are derived in Section 6: The distribution 
of order statistics and R_enyi entropy are given in Section 7: Maximum likelihood estimates of the unknown parameters are 
presented in section 8: The special cases of the Dagum-geometric and Dagum-Poisson distributions are discussed in section 9: A 
simulation study is conducted in order to examine the bias, mean square error of the maximum likelihood estimators and width 
of the con_dence interval for each parameter of the DP model in section 9: Section 10 contains concluding remarks.

DAGUM POWER SERIES DISTRIBUTION
Recently, Dagum distribution has been studied from a reliability point of view and used to analyze survival data [4,17]. Huang 

and Oluyede [17] developed the exponentiated Kumaraswamy-Dagum distribution and applied it to income and lifetime data. 
Kleiber [18] provided a comprehensive summary of Dagum distribution. See Kleiber and Kotz [19] for additional results on statistical 
size distribution with applications in economics and actuarial sciences. Suppose that the random variable X has the Dagum 
distribution where its CDF is given in equation (1). Given N; let X1,…,XN be independent and identically distributed random variables 
from Dagum distribution. Let N be a discrete random variable with a power series distribution (truncated at zero) and Probability 
Mass Function (PMF)
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where an ≥ 0 depends only on n, ( )
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n
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n
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∞
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=∑ and θ Є (0,s) (s can be ∞) is chosen such that C(θ) is finite and its three 

derivatives with respect to _ are defined and given by C’(.),C”(.) and C’”(.), respectively. The power series family of distributions 
includes binomial, Poisson, geometric and logarithmic distributions. See Table 1 for some useful quantities including an, C(θ), 
C(θ)-1, C’(θ); and C”(θ) for the Poisson, geometric, logarithmic and binomial distributions. 

Let X=max(X1,….,XN), then the cumulative distribution function (CDF) of X|N=n is given by:

| (x) 1 , 0, (4)
n

X N nG x x
βδλ λ δ β

−−
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which is the Dagum distribution with parameters λ, δ and nβ. The Dagum Power series class of distributions denoted is 
defined by the marginal CDF of X.

Table 1. Useful quantities for some power series distributions.

Distribution C(θ) C’(θ) C”(θ) C(θ)-1 an Parameter space
Poisson  eθ -1 eθ eθ Log (1+θ) (n!)-1 (0,∞)

Geometric Θ (1-θ)-1 (1-θ)-2 2 (1-θ)-3 θ(1+θ)-1 1 (0,1)
Logarithmic -log (1-θ) (1-θ)-1 (1-θ)-2 1- eθ n-1 (0,1)

Binomial (1+θ)m-1 m(1+θ)m-1 m(m-1)(1+θ)m-2 (1+θ)1/m-1
m
n
 
 
 

(0,1)

The general form of the CDF and pdf of the Dagum-power series distribution are given by:
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respectively, where ( )
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=∑ with an>0 depends only on n. A series representation of the DPS CDF is given by:
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= , and FD(x; β (n+1), δ, λ) is the Dagum CDF with parameters β (n+1), δ, λ>0. Similarly, the DPS PDF 

can be written as:
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where fD(x, β (n+1), δ, λ) is the Dagum pdf with parameters β (n+1), δ, λ> 0.

On the other hand, if we consider X(1)=min(X1,…..,XN) and conditioning upon N=n, then the conditional distribution of X(1) given 
N=n is obtained as:
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The CDF of X(1), say FDPS, is given by:
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SPECIAL CASES
In this section, we present four special cases of the DPS family, namely the Dagum Poisson (DP); Dagum Geometric (DG); 

Dagum Logarithmic (DL) and Dagum Binomial (DB): For x>0, λ, β, δ, θ>0; the CDF of the DP is defined by equation (5) with 
C(θ)=eθ-1 leading to:
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The PDF of the DP distribution is given by:
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Similarly, the CDF and PDF of the DG distribution are respectively, given by:
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Whereas, the CDF and pdf of the DL distribution are given by:
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respectively. Finally, the CDF and PDF of the DB distribution are given by:
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respectively.

HAZARD AND REVERSE HAZARD FUNCTIONS

The hazard and reverse functions of the DPS distribution are given by:
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respectively.

SPECIAL CASES OF HAZARD FUNCTIONS
The hazard and reverse hazard functions for DP distribution are given by:
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respectively. Likewise, the hazard and reverse hazard functions for DG distribution are given by:
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respectively. The hazard and reverse hazard functions for the DL distribution are given by:

( )
( ) ( )( )

( )( ) ( )

111 1 1 1
; , , , ,

log 1 1 log 1
DPF

x x x
h x

x

β βδ δ δ

βδ

βδλθ λ θ λ
β δ λ θ

θ λ θ

−− − −− − − −

−−

+ − +
=

− + − −

and

( ) ( )
( )( ) ( )( )

11 1
; , , , ,

1 1 log 1 1
DPF

x x
T x

x x

βδ δ

β βδ δ

βδλθ λ
β δ λ θ

θ λ θ λ

− −− − −

− −− −

+
=

+ − − +

respectively. The hazard and reverse hazard functions for DB distribution are given by:
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QUANTILE FUNCTION, MOMENTS AND CONDITIONAL MOMENTS
The qth quantile of the DPS distribution is given by:
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1/1/11 1 , 19q
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							                                            (19)

where U Є (0,1) and C-1(.) is the inverse function of C(.), Consequently, a random number can be generated based on 
equation (19).

Moments are necessary and crucial in any statistical analysis, especially in applications. Moments can be used to study the 
most important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and kurtosis). If the random 
variable X has a DPS distribution, with parameter vector θ=(λ, δ, β, θ); then the rth moment of X is given by:
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for δ>r. Note that the rth non-central moment follows readily from the fact that DPS pdf can be written as a linear combination 
of Dagum densities with parameters λ, β (n+1),δ>0.

The rth conditional moment for DPS distribution is given by:
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Where ( ) ( ) 1
1t a a δλ

−−= +  δ>r; and 
(a) 1 1

(a) 0
(c,d) (1 u)
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tB u du− −= −∫ . The mean residual life function is 

( )X | XE t t> − .

MEAN AND MEDIAN DEVIATIONS, BONFERRONI AND LORENZ CURVES
The amount of scattering in a population can be measured to some extent by the totality of deviations from the mean and 

the median. In this section, the mean and median deviations, as well as Bonferroni and Lorenz curves of the DPS distribution are 
presented. If X has the DPS distribution, we can derive the mean deviation about the mean μ=E(X) and the mean deviation about 
the median M from

1 20 0
| x | (x)dx | x M | (x)dx,DPS DPSf and fδ µ δ

∞ ∞
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respectively. The mean μ is obtained from equation (20) with r=1, and the median M is given by equation (19) when q=1/2. 
The measure δ1 and δ2 can be calculated by the following relationships:
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the quantile function is given in equation (19). Consequently,
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for δ>1, where ( ) ( ) 1
1t a a δλ

−−= + , δ>r; and 
(x) 1 1

( ) 0
(c,d) (1 t)

F c d
F xB t dt− −= −∫ for |F(x)|<1 is incomplete Beta function.

ORDER STATISTICS AND R_ENYI ENTROPY
In this section, the distribution of the kth order statistic and Renyi entropy for the DPS distribution are presented. The entropy 

of a random variable is a measure of variation of the uncertainty.

Order Statistics

The pdf of the kth order statistics from a pdf f(x) is
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We apply the series expansion
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for b>0 and |z<1, to obtain the series expansion of the distribution of order statistics from DPS distribution. Using equations 
(25), the pdf of the kth order statistic from DPS distribution is given by:
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RENYI ENTROPY

Renyi entropy of a distribution with pdf f(x) is defined as:
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Note that by using equation (6), we have:
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Consequently, Renyi entropy of DPS distribution is given by:
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Renyi entropy for the special cases can be readily obtained for specified C(θ).

ESTIMATION

In this section, we discuss several methods of estimation of the model parameters including maximum likelihood, ordinary 
least squares, weighted least squares, minimum distance and maximum product of spacing. The method of maximum likelihood 
is presented in detail.
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MAXIMUM LIKELIHOOD ESTIMATION
Estimation of the unknown parameters of the DPS distribution by the method of maximum likelihood is addressed in this 

section. Let x1,…, xn be a random sample of size n from DPS distribution and θ=(β,δ,λ,θ)T be the parameter vector. The log-
likelihood function for _ based on this sample becomes
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βδ δλβδθθ δ β λ θ λ
θ

−− −

= = =

 = = − + − + + + +  ∑ ∑ ∑                    (28)

The score components corresponding to the parameters in θ are given by:

( ) ( ) ( )
1 1

log 1 1 log 1 ,
n n

i i i i
i i

L n x x x
β

δ δ δλ θ λ λ µ
β β

−
− − −

= =

∂
= − + + + +

∂ ∑ ∑

( ) ( ) 1

1 1 1

loglogx 1 1 log ,
(1 x )
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i i

i i i i i
i i ii

x xL n x x x
δ βδ δ

δ

λβ θβ λ µ
β δ λ

−
− −−

−
= = =

∂
= − + + + + +

∂ +∑ ∑ ∑

And,

( ) ( ) ( ) 1

1 1
1 1 ,

1 x

n n
i

i i i
i ii

xL n x x
δ βδ δ

δ
β θβ λ µ

β λ λ

−
− −− −

−
= =

∂
= − + − +

∂ +
∑ ∑

( ) ( )
1

'( ) 1 29
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L n nC x
C

βδθ λ µ
β θ θ

−−

=

∂
= − + +
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where 
( )
( )

" 1

' 1
i

i
i

C x

C x

δ

δ

θ λ β
µ

θ λ β

−

−

 + − =
 + − 

. The Maximum Likelihood Estimator (MLE), 0L L L L
λ β δ θ
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

can be obtained by solving 

simultaneously the nonlinear equations”.

0L L L L
λ β δ θ
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ .

These are not linear in the parameters. Hence iterative methods are required to solve them. The Newton-Raphson method 
is an iterative method for solving nonlinear equations. To implement the Newton-Raphson method we require the second partial 
derivatives of log-likelihood function (28). The second partial derivatives are obtained as

2 ( ) .n

i j

L θ
θ θ

∂
∂ ∂

	           											                    (30)

Note that (30) is a matrix called the Hessian matrix. In the Newton-Raphson method, provisional estimates for the vector of 
parameters θ on iteration ‘i’ are improved by:

( ) ( )
12

1
n n

i i
i i j

L Lθ θ
θ θ

θ θ θ

−

+

 ∂ ∂
= −   ∂ ∂ ∂ 

These iterations continue until the changes in the parameter estimates and/or likelihood value are sufficiently small. At 
this point, the solution is said to have converged, and the large-sample variance-covariance matrix of the maximum likelihood 
estimator is then obtained as the negative inverse of the matrix of second derivatives. Standard errors of the parameter estimates 
are obtained as the square root values of the diagonal entries of this (negative inverse) matrix. The maximum likelihood estimates 
and their accompanying standard errors can be used to compute asymptotic z-statistics (i.e., Wald statistics) or construct 
confidence intervals.

ORDINARY LEAST SQUARES AND WEIGHTED LEAST SQUARES
In this subsection, we discuss the method of both ordinary least squares and Weighted Least Squares. Let x1:n<x2:n<…<xn:n 

denote the order statistics based on a random sample of size n from the distribution with CDF F(y), then
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( ) ( ) ( )
( ) ( )

( ): : 2

1
31

1 1 2
i n i n

i n iiE F x and Var F x
n n n

− +
= =      + + +

                                                   (31)

Now, let x1:n<x2:n<…<xn:n denote the order statistics based on a random sample of size n from the DPS distribution. The 

Ordinary Least Square (OLS) estimates of the DPS parameters θ=(β,δ,λ,θ)T say, ( )ˆ ˆ ˆ ˆ ˆ, , ,
T

OLS OLS OLS OLS OLSθ β δ λ θ= are obtained by 

minimizing the function

( ) ( ) ( )
2

:
1

| | .
1

n

i n
i

iQ x F x
n

θ θ
=

 = − + 
∑                                                            (32)

The Weighted Least Square (WLS) estimates of the DPS parameters θ=(β,δ,λ,θ)T say, ( )ˆ ˆ ˆ ˆ ˆ, , ,
T

WLS WLS WLS WLS WLSθ λ β δ θ=  are 
obtained by minimizing the function

( ) ( ) ( )
2

:
1 :

1| |
1

n

i n
i i n

iW x F x
nVar F x

θ θ
=

 = − +    
∑

 ( )
2

:
1

| , (33)
1

n

i i n
i

iw F x
n

θ
=

 = − + 
∑                                                 (33)

where
( ) ( )

( )

21 2
1i

n n
w

i n i
+ +

=
− +

MINIMUM DISTANCE METHODS
The estimates of the DPS parameters can be obtained via the minimization of the well-known Anderson-Darling and Cramer-

von Mises goodness-of-_t statistics. This class of goodness-of-_t statistics is based on the difference between the estimates 
of the DPS CDF and the corresponding empirical distribution function. The Anderson-Darling (AD) estimates of the DPS model 
parameters θAD, say ˆ

ADθ are obtained by minimizing the function

( ) ( ) ( ) ( )( ): 1 :
1

1| 2 1 log | 1 | . (34)
n

i n n i n
i

AD x n i F x F x
n

θ θ θ+ −
=

= − − − −  ∑                (34)

The Cramer-von Mises (CVM) estimates of the DPS parameters θCVM, say ĈVMθ are obtained by minimizing the function

( ) ( )
2

:
1

1 2 1| | , (35)
12 2

n

i n
i

iCVM x F x
n n

θ θ
=

− = + − 
 

∑                                               (35)

with respect to the parameters θ=(β, δ, λ, θ)T.

MAXIMUM PRODUCT OF SPACINGS METHOD
The (n+1) uniform spacings of the first order of the sample are given by D1=F(x1:n|θ), Dn+1=1-F(xn:n|θ) and Di=F(xi:n| θ)- 

F(x(i-1):n| θ); i=1,2,…, n: The Maximum Product of Spacings (MPS) method consist of finding the values of θ which maximizes the 
geometric mean of the spacings given by:

( )
( )

1
1

1

| , (36)
n n

i
i

GM x Dθ
+

=

 
=  
 
∏                                  (36)

or equivalently,

( )( )
1

i
1

1log | log(D ), (37)
1

n

i
GM x

n
θ

+

=

Ψ = =
+ ∑                    (37)

by taking 0=F(x0:n|θ)<F(x1:n|θ)<…<F(xn:n|θ)<F(xn+1:n|θ)=1: The MPS estimates of the parameters, denoted by M̂PSθ  is 
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obtained by solving the nonlinear equations

, , , 0
T

β δ λ θ
 ∂Ψ ∂Ψ ∂Ψ ∂Ψ

= ∂ ∂ ∂ ∂ 

using a numerical method. See Chen and Amin [20] for additional details.

DAGUM-GEOMETRIC AND DAGUM POISSON DISTRIBUTIONS
In this section, we consider and study Dagum-geometric and Dagum-Poisson distributions in detail. We focus on the case 

in which N is a discrete random variable following a geometric distribution (truncated at zero) with the probability mass function 
given by

( ) ( ) ( ) ( )1; 1 , 0,1 . (38)nP n P N n for n N andθ θ θ θ−= = = − ∈ ∈                              (38)

Note that N can also be taken to follow other discrete distributions, such as binomial, Poisson, logarithmic, where the 
discrete distribution need to be truncated zero because one must have N ≥ 1. Now, let X1,X2,….,XN be N independent and identically 
distributed (iid) random variables following the Dagum distribution cumulative distribution function. If X(1)=min {Xi}i=1

N , then the 
conditional cumulative distribution of X(1)|N=n is given by:

( )(1)|N n ( ) 1 1 1 ,
n

xG X x
βδλ

−−
=

 = − − +  

and the CDF of X(1) is given by:
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1

; , , , 1 1 1 1
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∞ −− −
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+
= >
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                                                            (39)

Note that with X(N)=max{Xi}i=1
N; then the conditional cumulative distribution of X(N)|N=n is given by:

(1)|N n (x) (1 x ) ,n
XG δ βλ − −

= = +

and the CDF of X(N) is given by:

( )
( ) ( )
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1 1
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1 1
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                                (40)

The corresponding pdf of X(1) is given by:

( )
( ) ( )

( ){ }
11
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1 1
; , , , , 0.

1 1 1
DG

x x
F x x

x

βδ δ
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                 (41)

We shall refer to the distribution given by equations (40) and (41) as the Dagum geometric (DG) CDF and pdf, respectively. 
The Hazard Function (HF) and Reverse Hazard Functions (RHF) of the DG distribution are given by:

( )
( ){ } ( )

( )
11 1(x)(x) ,

1 (x) 1 1 1 1 1
DG

DG
DG

x xfh
F x x

βδ δ

β βδ δ

βλδ λ

θ λ λ

− −− − −

− −− −

+
= =

−    − − + − +      
               (42)
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Figure 1. Graphs of DG pdf.

Figure 2. Graphs of DG hazard functions.

and

( )
( ) ( ){ } ( )

11(x)(x) , 43
(x) 1 1 1 1

DG
DG

DG

xfT
F x x

δ

βδ δ

θ βλδ

λ θ λ

− −

−− −

−
= =

 + − − +  
						                 (43)

respectively. The plots of DG pdf and hazard rate function for selected values of the model parameters λ, δ, β and θ are given 
in Figures 1 and 2.

These plots of the hazard function show various shapes including monotonically decreasing, unimodal and upside down 
bathtub shapes for different combinations of the values of the parameters. The density and hazard functions can exhibit different 
behavior depending on the values of the parameters when chosen to be positive, as shown in these plots (Figures 1 and 2). 
However, it is hard to analyze the shape of both the density and hazard function due to their complicated forms. The plots of 
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the hazard rate function show various shapes including monotonic and non-monotonic shapes such as upside down bathtub 
shapes for the combinations of the values of the parameters. This flexibility makes the DG hazard rate function suitable for both 
monotonic and non-monotonic empirical hazard behaviors that are likely to be encountered in real life situations.

Let N be distributed according to the zero-truncated Poisson distribution

 

Figure 3. Graphs of DP PDF.

with PDF

( ) ( )
, 1, 2,..., 0. (44)

! 1

neP N n n
n e

θ

θ

θ θ
−

−
= = = >

−
						                                              (44)

Let X=max(Y1,….,YN), then the CDF of X|N=n is given by:

|N n (x) 1 , 0, (45)
n

XG x x
βδλ λ δ β

−−
=  = + > 0, , , >  						                                           (45)

which is the Dagum distribution with parameters λ, δ, and nβ: The Dagum-Poisson (DP) distribution denoted by DP (λ, δ, β, 
θ) is defined by the marginal CDF of X, that is,

( )
( )

( )
1 exp 1

; , , , 46
1

x
F x

e

βδ

θ

θ λ
λ δ β θ

−− − + 
=

−
						                                             (46)

for x>0, λ, β, δ, θ>0. The DP density function is given by:

( )
( ) ( )11 1 exp 1

; , , , . (47)
1DP

x x x
f x

e

β βδ δ δ

θ

βλδθ λ θ λ
λ δ β θ

− − −− − − − + + 
=

−
				                          (47)

The plots of DP pdf and hazard rate function for selected values of the model parameters λ, δ, β and θ are given in 
Figures 3 and 4. 

The plots of the hazard function show various shapes including monotonically decreasing, unimodal and bathtub followed 
by upside-down bathtub,
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Figure 4. Graphs of DP hazard functions.

upside down bathtub shapes for different combinations of the values of the parameters.

SOME SUB-MODELS OF THE DAGUM-GEOMETRIC AND DAGUM-POISSON 
DISTRIBUTIONS

The DG distribution is a very flexible model that has several different sub-models when its parameters are changed. The DG 
distribution contains several sub-models including the following distributions.

•	 If β=1, then DG distribution reduces to a new distribution called Log-Logistic Geometric (LLoGG) or Fisk Geometric (FG) 
distribution with CDF given by:

( ) ( )
( )

1

1

1
; , , , 0 (48)

1 1 1
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x
F x x

x

δ

δ

λ
λ δ θ

θ λ
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+
= >

 − − +  
						                              (48)

If in addition to β=1; we have θ↓0, then the resulting distribution is the log-logistic or Fisk distribution.

•	 When θ↓0 in the DG distribution, we obtain Dagum distribution

•	 The Burr-III geometric (BIIIG) distribution is obtained when λ=1: If in addition, θ↓0, the Burr-III distribution with parameter 
δ,β>0 is obtained

The DP distribution contains several special-models including the following distributions.

•	 If β=1; then DP distribution reduces to a new distribution called Log-Logistic Poisson (LLoGP) or Fisk-Poisson (FP) 
distribution with CDF given by:

( )
( ) ( )( )

( )

1 1

2
1 exp 1

; , , , 0 (49)
exp 1LLoGG

x x
F x x x

δ δλ θ λ
λ δ θ λθδ

θ

− −− −

−
+ +

= >
−

				               (49)

If in addition to β=1; we have θ↓0, then the resulting distribution is the log-logistic or Fisk distribution.

•	 When θ↓0 in the DP distribution, we obtain Dagum distribution

•	 The Burr-III Poisson (BIIIP) distribution is obtained when λ=1: If in addition, θ↓0, Burr-III distribution with parameter δ,β>0 
is obtained

SOME STATISTICAL PROPERTIES
In this subsection, some statistical properties of DG and DP distributions including quantile function, moments, conditional 

moments, Lorenz and Bonferroni curves are presented.
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EXPANSION OF DG AND DP DENSITIES
In this subsection, we provide an expansion of the DG distribution. Note that, using the fact that if |z<1 and k>0, we have 

the series representation

( ) ( )
0

1 , (50)
(k) i!

k i

i

k i
z z

∞
−

=

Γ +
− =

Γ∑                    							                                              (50)

and the binomial expansion [1-(1+λx-δ)-β]i given by:

( ) ( ) ( )
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1 1 1 1 , (51)
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∑ 							                 (51)

the DG pdf can be written as follows:
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where ( )
( ) ( ) ( )1 1 1
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j ii
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j
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ω θ

 
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+

, and ( )( ); , , 1Df x jδ λ β + is the Dagum pdf with parameters 

λ, β (j+1),δ>0. The above equation shows that the DG density is indeed a linear combination of Dagum densities. Consequently, 
the mathematical and statistical properties can be immediately obtained from those of the Dagum distribution.

Similarly, applying the fact that Maclaurin series expansion of
0

/ !,x k
k

e x k∞

=
=∑  the DP pdf can be written as follows:
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where ( )
( ) ( )

1

, ,
1 ! 1

k

k
k eθ

θω θ
+

=
+ − and ( )( ); , , 1 ,Df x jδ λ β δ+ is the Dagum pdf with parameters λ, β (k+1), δ>0. The 

above equation shows that the DP density is indeed a linear combination of Dagum densities.

QUANTILE FUNCTIONS

The qth quantile of the DG distribution is obtained by solving the nonlinear equation
( )

( )
1

1 1 1

x
U

x

βδ

βδ

λ

θ λ

−−

−−

+
=

 − − +  

, where U is a 

uniform variate on the unit interval [21]. It follows that the qth quantile of the DG distribution is given by

( )
1/1/

11 1 (54)
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U
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δβ
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λ θ

−
−  −   = −  −    

								                               (54)

Similarly, the qth quantile of the DP distribution is obtained by solving the nonlinear equation ( )1 1
1

e x
U

e

βθ δ

θ

λ
−−+ −

=
−

, where U 

is a uniform variate on the unit interval [21]. It follows that the qth quantile of the DP distribution is given by:
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( )( )
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					                                                         (55)

Consequently, the random number can be generated based on equation (55).

MOMENTS
In this subsection, we present the rth moment of DG and DP distributions. The rth moment of the DG distribution is given by:

( ) ( ) ( ) ( )
, 0

(1 ) 1 1 1 ,1 56
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j i
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∑ 	                                                                    (56)

The Moment Generating Function (MGF) of X is given by:
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∑ ∑

Similarly, the rth moment of the DP distribution is given by:
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CONDITIONAL MOMENTS
For income and lifetime distributions, it is of interest to obtain conditional moments and mean residual life function. The rth 

conditional moments for DG distribution is given by:
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where t(a)=(1+λa-δ)-1, δ>r, and ( ) 1(a) 1
( ) 0( , ) 1 dt c

t aB c d f u u du−−= − . The mean residual life function is E (X|X>t)-t. 

Similarly, the conditional moments for DP distribution is given by:
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where t(a)=(1+λa-δ)-1,δ>r, and ( ) 1(a) 1
( ) 0( , ) 1 dt c

t aB c d f u u du−−= −  The mean residual life function is E (XjX>t) –t.

MEAN DEVIATIONS, BONFERRONI AND LORENZ CURVES
If X has the DG distribution, we can derive the mean deviation about the mean μ=E(X) and the mean deviation about the 

median M from equation 22, that is,

( ) ( )1 22 2 2 2 ( ) ,DGF T and T Mδ µ µ µ µ δ µ= − + = −

where the mean μ is obtained from equation (56) with r=1, the median M is given by equation (54) when q=1/2 , and 

( ) . ( )a a DGT f x g x dx∞= is
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∑∑

Also, the measure δ1 and δ2 for the DP distribution can be calculated by the following relationships:

( ) ( )1 22 2 2 2 ( ) , (59)DGF T and T Mδ µ µ µ µ δ µ= − + = − 					                                              (59)

where ( ) ( ).a DPT a f x f x dx∞= follows from equation (58), that is,



34Res Rev J Statistics Math Sci | Volume 5 | Issue 1 | February, 2019

Research & Reviews: Journal of Statistics and Mathematical Sciences
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Bonferroni and Lorenz curves are a widely used tool for analyzing and visualizing income inequality. Lorenz curve, L(p) can 
be regarded as the proportion of total income volume accumulated by those units with income lower than

or equal to the volume p, and Bonferroni curve, B(p) is the scaled conditional mean curve, that is, the ratio of group mean 

income of the population. Let ( ) 0 . ( )a
DGI a f x f x dx= and μ=E(X), then Bonferroni and Lorenz curves are given by ( ) ( )I q

B p
pµ

=  

and ( ) ( )I q
L p

µ
= , respectively, for 0 ≤ p ≤ 1, and 1 ( )DGq F p−= . The mean of the DG distribution is obtained from equation (56) 

with r=1 and the quantile function is given in equation (54). Consequently,

( ) ( ) ( )( )
0 0

1 1( ) , , 1 ,1 , 60t a
i j

I a i j B jω θ β
δ δ

∞ ∞

= =

 = + + − 
 

∑∑ 					                                            (60)

for δ>1, where t(a)=(1+λa-δ)-1; and ( ) 1( ) 1
( ) 0( , ) 1 dF x c

F xB c d f t t dt−−= − for |F(x)|<1 is incomplete Beta function.

Similarly, for the DP distribution, we have:

( ) ( ) ( )( )
0

1 1( ) , 1 ,1 , 61t a
k

I a k B kω θ β
δ δ

∞

=

 = + + − 
 

∑ 						                                           (61)

for δ>1, where t(a)=(1+λa-δ)-1, and ( ) 1( ) 1
( ) 0( , ) 1 dF x c

F xB c d f t t dt−−= − for |F(x)|<1 is incomplete Beta function.

ORDER STATISTICS AND RENYI ENTROPY
In this section, the distribution of the kth order statistic, L-moments [22] and Renyi entropy for the DG and DP distributions are 

presented. The entropy of a random variable is a measure of variation of the uncertainty.

ORDER STATISTICS
We apply the series expansion

( ) ( )
( )

1

0

1 (b)
1 ,

!

j
b j

j
z z

b j j

∞
−

=

− Γ
− =

Γ −∑ 									                                 (62)

For b>0 and |z|<1, and equation (50), to obtain the series expansion of the distribution of order statistics from DG 
distribution. The pdf of the kth order statistic from DG distribution (using equation (26)) is given by:

( ) ( ) ( ) 11
:

0 0 0
( ) , , , . 1 ,

k s

k n
s t

f x K s t k x x
β ωδ δ

ω

ω λ
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= = =
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where ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1 1 1

, , , 1
1 1 1 ! ! !
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tnn k s k t t

K s t k k
kn k i s k t s t
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ω θ θ βδλ
ω ω

+− Γ − + Γ + − + Γ +  
= − Γ − + − Γ + − Γ + −  

. 

The rth moment of the distribution of the kth order statistics from the DG distribution is given by:

( ) ( )( ) ( ):
0 0 0

( ) , , , ,1 , (63)
r

r
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r rE X K s t k k s B k sδ
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ω β ω β ω
δ δ

∞ ∞ ∞
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 

∑∑∑ 		                        (63)

For δ>r; where ( ) ( ) 11 1
0, 1 baB a b f t t dt−−= −  is the complete beta function. 

Similarly, the pdf of the kth order statistic from DP distribution is given by:

( ) ( ) ( )
( ) ( ) 1

:
0

1 1
( )

! 1

s
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s

n f x n k
f x k F x

k s n k s
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That is,
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. Thus, the pdf of the ith order statistic 

from the DP distribution is a linear combination of Dagum pdfs with parameters λ, β (w+1) and δ>0. The rth moment of the 

distribution of the ith order statistic is given by:

( ) ( ) ( ):
, , 0
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L-MOMENTS
The L-moments [22] are expectations of some linear combinations of order statistics and they exist whenever the mean of 

the distribution exits, even when some higher moments may not exist. They are relatively robust to the effects of outliers and are 
given by:

( ) ( )1 1 : 1
0

1 1 , 0,1,2,....... (65)
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The L-moments of the DG and DP distributions can be readily obtained from equation (65). The first four L-moments are 

given by ( ) ( ) ( )1 1:1 2 2:2 1:2 3 3:3 2:3 1:3
1 1, , 2
2 3

E X E X X E X X Xλ λ λ= = − = − + and ( )4 4:4 3:4 2;4 1:4
1 3 3
4

E X X X Xλ = − + − , 

respectively.

RENYI ENTROPY

Note that by using equation (62), we have,
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Renyi entropy of DG distribution is given by:
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MAXIMUM LIKELIHOOD ESTIMATION
In this section, we consider the Maximum Likelihood Estimators (MLE's) of the parameters of the DG and DP distributions.

Let x1,…, xn be a random sample of size n from DG or DP distribution and Θ=(λ, δ, β, θ)T be the parameter vector.

The log-likelihood function for the DG distribution can be written as:

( ) ( )
1

log 1 log log log 1 log
n

i
i

L n n n n xθ β δ λ δ
=

= − + + + − + ∑



36Res Rev J Statistics Math Sci | Volume 5 | Issue 1 | February, 2019

Research & Reviews: Journal of Statistics and Mathematical Sciences

( ) ( ) ( ){ } ( )
1 1

1 log 1 2 log 1 1 1 67
n n

i i
i i

x x
βδ δβ λ θ λ

−− −

= =

 − + + − − − +  ∑ ∑ 					                 	        (67) 

The associated score function is given by ( ) , , ,
T
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The Maximum Likelihood Estimate (MLE) of Θ, say Θ̂, is obtained by solving the nonlinear system Un(Θ)=0. The solution of 
this nonlinear system of equation is not in a closed form. These equations cannot be solved analytically, and statistical software 
can be used to solve them numerically via iterative methods. We can use iterative techniques such as a Newton-Raphson type 
algorithm to obtain the estimate Θ̂

The log-likelihood function for the DP distribution can be written as:
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The Maximum Likelihood Estimate (MLE) of Θ, say Θ̂  , is obtained by solving the nonlinear system Un(θ)=0: The solution of 
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this nonlinear system of equation is not in a closed form. These equations cannot be solved analytically, and statistical software 
can be used to solve them numerically via iterative methods. We can use iterative techniques such as a Newton-Raphson type 
algorithm to obtain the estimate of Θ.

ASYMPTOTIC CONFIDENCE INTERVALS

In this section, we present the asymptotic confidence intervals for the parameters of the DG and DP distributions. The 
expectations in the Fisher Information Matrix (FIM) can be obtained numerically. Let ( )ˆ ˆ ˆ ˆˆ , , ,λ δ β θΘ =  be the maximum likelihood 
estimate of ( ), , ,λ α β θΘ = . Under the usual regularity conditions and that the parameters are in the interior of the parameter 
space, but not on the boundary, we have ( ) ( )( )1

4
ˆ 0,n dN I −Θ −Θ Θ



, where I(Θ) is the expected Fisher information matrix. The asymptotic 
behavior is still valid if I(Θ) is replaced by the observed information matrix evaluated at Θ̂ , that is J( Θ̂ ). The multivariate normal 
distribution with mean vector

0=(0, 0, 0, 0)T and covariance matrix I-1(Θ) can be used to construct confidence intervals for the model parameters. That is, 
the approximate 100 (1-η)% two-sided confidence intervals for λ, δ, β and θ are given by:

( ) ( ) ( )1 1 1
/2 /2 /2

ˆ ˆ ˆˆ ˆ ˆ, , ,Z I Z I Z Iη λλ η δδ η ββλ δ β− − −± Θ ± Θ ± Θ  and ( )1
/2

ˆ ˆ ,Z Iη θθθ −± Θ respectively, where 

( ) ( ) ( ) ( )1 1 1 1ˆ ˆ ˆ ˆ, , ,I I I Iλλ δδ ββ θθ
− − − −Θ Θ Θ Θ are diagonal elements of ( ) ( )( ) 1

1 ˆ ˆ
nI nI

−
− Θ = Θ and Zη/2 is the upper (η/2)th percentile of a 

standard normal distribution.

We can use the Likelihood Ratio (LR) test to compare the fit of the DG or DP distribution with its sub-models for a given data 

set. For example, to test θ=0; the LR statistic is ( )( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ln L , , , ln , , ,0Lω λ δ β θ λ δ β = −  
, where ˆ ˆ ˆ, ,λ δ β and θ̂ , are the 

unrestricted estimates, and ,λ δ  and β  are the restricted estimates. The LR test rejects the null hypothesis if 
2ω χ∈>  where 2χ∈  

denote the upper 100Є% point of the 2χ distribution with 1 degrees of freedom.

MONTE CARLO SIMULATION STUDY

In this section, a simulation study is conducted to assess the performance and examine the mean estimate, average bias, 
root mean square error of the maximum likelihood estimators and width of the confidence interval for each parameter. We study 
the performance of the DP distribution by conducting various simulations for different sample sizes and different parameter 
values. Equation (55) is used to generate random data from the DP distribution.

The simulation study is repeated for N=5,000 times each with sample size n=25, 50, 75, 100, 200, 400, 800 and parameter 
values I: λ=2:5, β=0:6, δ=1:5, θ=0:8 and II: λ=3:8, β=0:5, δ=0:2, θ=1:2. Five quantities are computed in this simulation study.

Mean estimate of the MLEϑ̂ of the parameter , , ,ϑ λ δ β θ= :

1

1 ˆ
N

iN
ϑ

=
∑

Average bias of the MLE ϑ̂  of the parameter , , ,ϑ λ δ β θ= :

( )
1

1 ˆ
N

iN
ϑ ϑ

=

−∑

Root mean squared error (RMSE) of the MLE ϑ̂  of the parameter , , ,ϑ λ δ β θ= :

( )2

1

1 ˆ
N

iN
ϑ ϑ

=

−∑
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Table 2. Monte carlo simulation results: mean, average bias, RMSE, CP, and AW.

  l ll

Parameter n Mean Average 
bias RMSE CP AW Mean Average 

bias RMSE CP AW

λ

25 6.1059 3.6059 12.8314 0.9208 57.6441 10.4999 6.6999 18.0013 0.9442 99.1421
50 4.1516 1.6516 8.4074 0.881 29.089 7.3514 3.5514 12.0537 0.9074 53.1391
75 3.21 0.7097 5.2219 0.85 18.9689 6.2794 2.4794 9.2801 0.8894 38.5516

100 2.7732 0.2732 3.3678 0.8226 14.5403 5.425 1.625 7.2022 0.8694 29.5216
200 2.3204 -0.1796 1.8215 0.8004 9.7076 4.4593 0.6593 3.9145 0.875 18.3216
400 2.233 -0.267 1.2408 0.8102 7.3836 4.1527 0.3527 2.5355 0.8794 12.898
800 2.2742 -0.2258 0.9722 0.8288 5.8144 4.0522 0.2522 1.8465 0.8846 9.2902

β

25 0.581 -0.019 0.7345 0.8916 3.2394 0.4635 -0.03646 0.5781 0.9178 2.3821
50 0.5124 -0.0876 0.3648 0.8966 1.5152 0.4205 -0.0795 0.3546 0.9174 1.2299
75 0.5076 -0.0924 0.2996 0.9064 1.2018 0.4151 -0.0849 0.2097 0.9174 0.9724

100 0.5039 -0.0961 0.2318 0.9126 1.0504 0.4207 -0.0793 0.1729 0.9168 0.8574
200 0.5205 -0.0795 0.1765 0.9326 0.7726 0.4395 -0.0605 0.1421 0.9316 0.6306
400 0.5447 -0.0553 0.1333 0.9408 0.536 0.4615 -0.0385 0.1131 0.9446 0.4499
800 0.5673 -0.0327 0.092 0.9532 0.3613 0.4797 -0.0203 0.0779 0.9682 0.3066

δ

25 1.7356 0.2356 0.5704 0.987 2.2488 0.2314 0.0314 0.0708 0.9892 0.3004
50 1.6076 0.1076 0.3801 0.9776 1.5019 0.2155 0.0155 0.0489 0.9834 0.2054
75 1.55 0.05 0.2914 0.9698 1.2069 0.2097 0.0097 0.0408 0.9734 0.1672

100 1.5211 0.0211 0.2487 0.9672 1.0362 0.2064 0.0065 0.0343 0.9756 0.1446
200 1.4842 -0.0158 0.1742 0.9466 0.7559 0.2017 0.0017 0.0242 0.963 0.1044
400 1.4775 -0.0225 0.1294 0.9424 0.5591 0.2001 0.0001 0.01797 0.9554 0.0762
800 1.482 -0.018 0.094 0.9506 0.4134 0.1997 -0.0003 0.0129 0.9548 0.0553

θ

25 2.0443 1.2443 1.825 0.9422 14.2042 2.1845 0.9847 1.6176 0.976 14.1843
50 2.1779 1.3779 2.005 0.9508 12.4729 2.2855 1.0855 1.806 0.9828 12.2621
75 2.1795 1.3795 2.085 0.948 11.5404 2.2897 1.0897 1.9271 0.988 11.4679

100 2.2186 1.4186 2.1324 0.957 10.8672 2.2543 1.0543 1.897 0.9912 10.5053
200 2.0282 1.2282 1.9951 0.9748 9.1258 2.0514 0.8514 1.7881 0.9942 8.3227
400 1.7006 0.9006 1.6196 0.9804 6.8676 1.7566 0.5566 1.469 0.9938 6.1189
800 1.3582 0.5582 1.1099 0.9682 4.9404 1.4705 0.2706 1.0325 0.9854 4.2113

Coverage probability (CP) of 95% confidence intervals of the parameter , , ,ϑ λ δ β θ= , i.e., the percentage of intervals that 
contain the true value of the parameterϑ

Average width (AW) of 95% confidence intervals of the parameter , , ,ϑ λ δ β θ=
Table 2 presents the Mean, Average Bias, RMSE, CP and AW values of the parameters λ, δ, β and θ for different sample 

sizes. From the results in Table 2, we can verify that as the sample size n increases, the RMSEs decay toward zero. We also 
observe that for all the parametric values, the biases decrease as the sample size n increases. The table shows that the coverage 
probabilities of the confidence intervals are reasonably close to the nominal level of 95% and the average confidence widths 
decrease as the sample size n increases. Consequently, the MLE's and their asymptotic results can be used for estimating and 
constructing confidence intervals even for reasonably small sample sizes.

APPLICATIONS
In this section, we present an example to illustrate the edibility of the DG and DP distributions and its sub-models for data 

modeling. Estimates of the parameters of DG distribution (standard error in parentheses), Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov (KS) are presented for each data set. The command NLP in SAS 
and the R package are used here. We also compare DG distribution with other distributions including Exponentiated Weibull 
Geometric (EWG) distribution and Exponentiated Weibull-Poisson (EWP) (Mahmoudi and Sephadar, [23] distribution. The CDF of 
the EWG and EWP distributions are given by
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We also fitted the four parameter sub-model of the beta Weibull geometric (BWG) distribution given by:

( )
( )( )
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1 exp
; , , , , 0, 79

1 exp
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F x p x
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θα

α

β
α β θ
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 = >  − −
 

							                (79)

To the failure times, data set. Plots of the _tted densities and the histogram of the data are given in Figure 5. Probability 

plots [24] are also presented in Figure 5. For the probability plot, we plotted ( )( )ˆ ˆ ˆ ˆ; , , ,DG jF x λ δ β θ against j-0:375/n+0:25, j=1, 

2, ….,n, where x(j) are the ordered values of the observed data. We also computed a measure of closeness of each plot to the 

diagonal line. This measure of closeness is given by the sum of squares

( )( )
2

1

0.375ˆ ˆ ˆ ˆ; , , , .
0.25

n

DG j
j

jSS F x
n

λ δ β θ
=

 −  = −   +  
∑ 							                                  (80)

FAILURE TIMES DATA
This data set represents the failure times of 50 components (per 1000h) from Murthy et al. [25], Weibull models (Vol. 505), 

page 180. Initial value for DG model in R code are λ=1, δ=1, β=1, θ=0.1. Estimates of the parameters of DG distribution and its 
related sub-models (standard error in parentheses), AIC, BIC, SS and KS for failure times data are given in Table 3. The estimated 
variance-covariance matrix for DG model is

3.40 14 7.43 08 3.62 09 1.65 08
7.43 08 1.62 01 7.92 03 3.61 02

3.62 09 7.92 03 1.02 03 4.29 03
1.65 08 3.61 02 4.29 03 2.21 02

E E E E
E E E E

E E E E
E E E E

− − − − − 
 − − − − − − − 
 − − − − −
 

− − − − − 

Table 3. Estimates of models for failure times data set.

Estimates                                                       Statistics
Model λ δ β θ -2logL AIC BIC SS KS

DG 756914.7 4.9705 0.1363 0.7528 201.21 209.21 216.86 0.11 0.09
  (0.0000002) -0.403 -0.0319 -0.1486          

FG 6.9602 0.9108 1 0.8391 210.97 216.97 222 .71 0.1788 0.1354
  -0.0009 -0.1033 (-) (0.041)          
F 1.1200 0.9108 1 0 210.97 214.97 218.79 0.1788 0.1355
  (0.2858) -0.1033 (-) (-)          
D 42293.26 4.4033 0.0949 0 206.59 212.59 218.33 0.1867 0.0986
  (0.000002) -0.2664 -0.0134 (-)          

BIIIG 1 0.8915 1.0598 0 211.03 217.03 222 .76 0.1822 0.1407
  (-) -0.1788 -0.4826 (-)          

Biil 1 0.8915 1.0598 0 211.03 215.03 218.85 0.1822 0.1407
  (-) -0.1091 -0.1627 (-)          
  α β θ p          

B\.YG 0.4438 0.6937 8.9834 0.8926 203.77 211.77 219.41 0.2066 0.1557
  -0.1639 -1.0563 -31.151 -0.3603          
  α β θ ϒ          

EWG 5.9525 28.7391 0.4315 0.2698 205.41 213.41 221.06 0.1737 0.1262
  (2.2754) -0.1522 (0.452) -0.0241          
  α β ϒ θ          

EWP 0.0139 0.4972 0.6020 84.9653 204.91 212.91 220 .56 0.1580 0.1031
  -0.0267 -1.4189 -0.6779 -0.0048          

The 95% two-sided asymptotic confidence intervals for λ, δ, β and θ are given by 756914.7 ± 0.000000392, 4.9705 ± 
0.7899, 0.1363 ± 0.0.0625, and 0.7528 ± 0.2913, respectively.

The LR test statistics of the hypothesis H0: FG vs Ha: DG and H0: BIIIG vs Ha: DG are 9.7594 (p-value=0.001784) and 
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9.8160 (p-value=0.00173). The DG distribution is significantly better than FG and BIIIG distributions. Also, the DG distribution is 
significantly better than D distribution based on the LR test. The values of the statistics AIC, BIC and KS when compared to those 
for the sub-models and non-nested EWG, EWP and BWG models also points to DG distribution as a very good _t for the failure 
times data. The graphs of the fitted densities, probability plots and survival suction also shows that the DG distribution is indeed 
the “best" model for the failure times data set.

KEVLAR 49/EPOXY STRANDS FAILURE TIMES DATA
This data set consists of 101 observations corresponding to the failure times of Kevlar 49/epoxy strands with pressure 

at 90% [26-31]. The failure times in hours was analyzed by [32]. Estimates of the parameters of DP distribution and its related sub-
models (standard error in parentheses) [33-38], AIC, BIC, W*, A*, SS and KS for failure times data are given in Table 4. We also use 
the LR test to compare the DP distribution and its sub-models [39-42].

 
Figure 5. Graphs of failure times.

The estimated variance-covariance matrix for the DP distribution is given by:

46.2099 3.8087 0.1424 4.3109
3.8087 0.4739 0.0268 0.1673

0.1424 0.0268 0.0036 0.0296
4.3109 0.1673 0.0296 1.1016

− − 
 − − 
 − − −
 
− − − 

and the 95% two-sided asymptotic confidence intervals for for λ, δ, β and θ are given by 7.2834 ± 13.3269; 3.3711 ± 
1.3493, 0.2015 ± 0.11799, and 0.3744 ± 2.0572, respectively.

Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 6.

The LR test statistics of the hypothesis H0:FP vs Ha:DP and H0:BIIIP vs Ha:DP are 61.31 (p-value<0.0001) and 7.40 
(p-value=0.0065). DP distribution is significantly better than FP and BIIIP distributions. Also, the LR test indicates that DP 
distribution is also significantly better than Fisk and Burr-III distributions, however, there is no difference between DP and Dagum 
distribution based on the LR test. DP distribution has the smallest goodness of _t statistic W* and A* values as well as the 
smallest SS value among all the models that were fitted [43-45]. A comparison of DP distribution with the non-nested EWP and EPLP 
distributions using the AIC, AICC, BIC, W*, A*, and SS statistics, clearly shows that it is the superior model. Hence, DP distribution 
is the “best” fit for the data when compared to all the other models that were considered.

Table 4. Estimates of models for kevlar strands failure times data.

Estimates                                                                  Statistics
Model λ δ β θ -2logL AIC AICC BIC W* A* SS

DP 7.2834 3.3711 0.2015 0.3744 200.09 208.09 208.51 218.55 0.0657 0.4632 0.0699
  (6.7978) (0.6884) (0.0602) (1.0496)              
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FP 0.0108 0.6444 1.0000 39.4781 261.40 267.40 267.82 275.24 1.1126 6.0129 1.0084
  (0.0015) (0.0455)   (4.09E-05)              

BIIIP 1.0000 2.1278 0.3085 1.7423 207.48 213.48 213.90 221.33 0.2039 1.1841 0.2319
    (0.2470) (0.0920) (0.8605)              
D 9.0357 3.4267 0.2110   200.21 206.21 206.46 214.06 0.0742 0.4980 0.0809
  (6.9969) (0.6904) (0.0548)                
F 0.6240 1.2705 1.0000   225.37 229.37 229.49 234.60 0.5654 3.0709 0.3893
  (0.0850) (0.1069)                  

Bill c k                  
  1.1737 1.6327     217.10 221.10 221.22 226.33 0.4401 2.3866 0.4741
  (0.0983) (0.1637)                  
  α β ω θ              

EPLP 0.7894 1.7952 0.9385 1.1684 204.44 212.44 212.86 222.90 0.1349 0.8141 0.1292
  (0.2025) (0.6112) (0.3829) (1.2585)              
  δ β ϒ θ              

EWP 0.8588 1.3030 0.8717 1.2662 204.62 212.62 213.03 223.08 0.1408 0.8415 0.1347
  (0.3679) (0.7394) (0.2408) (1.2007)              

 

Figure 6. Fitted densities and probability plots for kevlar failure times.

CONCLUSION
A new class of distributions called the Dagum Power Series (DPS) is proposed and studied. The DPS distribution has 

Dagum Poisson, Dagum geometric, Dagum logarithmic, Dagum binomial and several other distributions as special cases. The 
DPS distribution is exible for modeling various types of lifetime and reliability data. We also obtain closed-form expressions for 
the moments, conditional moments, mean deviations, Lorenz and Bonferroni curves, distribution of order statistics and Renyi 
entropy. Methods of finding estimators such as Minimum Distance, Maximum Product of Spacing, Least Squares, Weighted Least 
Squares, and Maximum Likelihood were discussed. The special cases of DG and DP distributions re-discussed in details.
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