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Abstract: Data reduction tools are developed and evaluated using a data analysis framework. Simple and intelligent thinning algorithms are 

applied to both synthetic and real data and the thinned datasets are ingested into an analysis system. A major problem of data reduction is that 

certain types of camera or scanner produce vast amounts of data, the processing of which presents serious problems. Rather than process all of 

this data at every stage of the representation process, an alternative is to use a strategy in which the data is initially reduced, then a preprocessing 

can be completed without consuming a lot of time. 

This paper presents an algorithm for managing the amount of point data acquired by laser scanner. The proposed algorithm includes a method 

based on computing the surface normal which is fundamental in the most of reverse engineering algorithms. The normal vectors are calculated 

by fitting the best fit plane to the neighborhood. A point is assigned to normal and the angle between an arbitrary direction and the normal is 

obtained. The point data is subdivided into cells based on the angles, while the non-uniform cells are obtained. Thus, the amount of points can be 

reduced by sampling the representative points for each cell. Experimental results show that the proposed method has good results and appears to 

be quite stable even for large scale data reduction. 
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1.INTRODUCTION 

Data reduction allows more data sets to be stored in a given 

amount of disk or memory space. It also reduces the time 

required for images to be sent over the Internet or 

downloaded from Web pages. Furthermore, data reduction is 

useful because it helps reduce the consumption of expensive 

resources such as hard disk space or transmission bandwidth 

[1]. The selection of a data reduction algorithm depends 

mostly on criteria of achievable compression ratio and the 

quality of reconstructed images.  

Two fundamental components of reduction are redundancy 

and irrelevancy reduction. Redundancy reduction aims at 

removing duplication from the signal source (image/video). 

Irrelevancy reduction omits parts of the signal that will not 

be noticed by the signal receiver, namely the human visual 

system. In general, three types of redundancy can be 

identified: 

1- Spatial redundancy or correlation between 

neighboring pixel values. 

2- Spectral redundancy or correlation between 

different color planes or spectral bands [1]. 

3- Temporal redundancy or correlation between 

adjacent frames in a sequence of images (in video 

applications) [2]. 

The focused of this paper is limited in phase (1) where the 

establishing connectivity between adjacent points, reducing 

redundancy and merging point clouds taken from multiple 

views. A major problem in this phase is that certain types of 

scanner produce vast amounts of data, the processing of 

which presents a serious problem. Rather than process all of 

this data at every stage of the reconstruction process, an 

alternative is to use a strategy in which the data is reduced 

and used to construct a model. The full set of data is only 

used to improve this initial model if necessary. The 

challenge in reducing the data is to maintain sufficient 

information from which to calculate the object reliably 

without distorting the surfaces or their boundaries. Being 

able to reduce such large data sets whilst maintaining the 

information and accuracy contained in the original data will 

be advantageous for surface reconstruction and hence for 

follow on activities, especially in the manufacturing process. 

Recently, the researchers have been shown interest by data 

reduction algorithms to overcome the time consuming in 

data preprocessing. Aljahdali et al. [3] improved a data 

reduction method for reducing 3D points for reverse 

engineering. This technique is based on a discrete Gaussian 

image of the scanned points which is obtained by estimating 

surface normals and projecting them into a Gaussian sphere. 

The discrete Gaussian image is then used to partition the 

points into cells. In each cell, a reference point and its 

neighbors are used to determine the cell representative point 

and all other points are removed. The performance of the 

proposed method is illustrated using a range of point clouds 

scanned from typical engineering surfaces. 

Lazarus and Splitt [4] proposed thinning algorithms for 

applying to both synthetic and real data. As a precursor to 

real-data applications, the algorithms are applied to one- and 

two-dimensional synthetic datasets. Piotr et al. [5] found 

way of data reduction can be used with synthetic transmit 
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aperture method (STA) and it bases on an assumption that a 

signal obtained from any pair of transducers is the same, no 

matter which transducer transmits and which receives. 

According to this postulate, nearly a half of the data can be 

ignored without image quality decrease.  

Surprisingly, little work has been done to combine real data 

reduction and hold only the pre-processed data for further 

analysis, especially in 3D data sets. Such work is crucial 

importance since it is extremely difficult to work with dense 

data in reverse engineering processes. So the present paper 

introduces new idea to reduce dense data and applicable for 

all reverse engineering processes. It has advantages of 

accuracy and computation, where the most computation is 

the surface normal, which is necessary for all most reverse 

engineering applications.  

This paper presents a fast algorithm for data reduction of the 

given 3D points. The proposed algorithm consists of three 

steps. In the first step, the neighborhood of the points is 

estimated, whereby the surface normal is obtained using 

planar fitting. In the second step, point data is subdivided 

into cells based on surface normal. The procedure in third 

step is used to reduce the data in each cell. 

This paper is organized as follows: In section 2, the 

proposed algorithm is described including the neighborhood 

is computed, fitting the plane surface to neighborhood, 

normal vectors are estimated, partitioning the data into cells 

are presented and reducing 3D data reduction. To show the 

efficiency of the proposed method, some examples are 

presented in section 3. We conclude the paper in section 4. 

2. The Algorithm  

The proposed algorithm is consists of three steps. The first 

step is pre-processing where the data is input, organized, and 

partially analyzed to prepare the remaining operations. Pre-

processing includes data points, sorting, determination of a 

neighborhood for each point, and computation of an 

approximate normal vector to the surface at each point. In 

the second step, an initial partition of point data into cells is 

obtained. In each cell, we use the normal vectors assigned to 

the points. An arbitrary direction is selected and referred as 

a reference direction. The angles between the reference 

direction and the normal vectors are estimated, where the 

angles with smallest value and the biggest value are 

selected. If the value is greater than a prescribe value the 

cell is partitioned again. The procedure in third step is used 

to reduce the redundant data in each cell.  

The method can be divided into the following steps: 

- Neighborhood estimation 

- Computing the plane surface to each neighbor 

- Estimating normal vector 

- Reducing 3D points. 

2.1 Neighborhood estimation 

A neighborhood of a point consists of data point is from the 

original data set, which are “near” the given point. An ideal 

definition of neighborhood for the purpose of points 

reduction would be that a neighborhood includes only those 

data points that describe the surface at the given point but 

includes all points necessary for measurement of the 

variation of the surface around the given point.  An ideal 

definition of neighborhood for the purpose of feature point 

extraction was presented in [6,7] that a neighborhood 

includes only those data points that describe the surface at 

the given point but includes all points necessary for 

measurement of the variation of the surface around the given 

point. A neighborhood is chosen for each point that includes 

all point within a given distance of the point in combination 

with a limit on the maximum number of points in a 

neighborhood. Here, we use the computation of the 

neighborhood that presented in Vanco’s paper, where this 

method obtains almost good results and works very fast. We 

select k to be 10 which sufficient to obtain faithful results. 

So , for every point its k-nearest neighbors are computed, 

which describe this small portion of the surface-in ideal case 

the neighbors are distributed regularly round the point.   

2.2 . Computing Planer Surface to Neighbor 

Assume a point data in which we want to manage it consists 

of n -points. We have the neighborhood points of a point  

kizyxp iiii ,..,2,1),,,(  , where k is the number of 

neighborhood and we want to fit the best plane to those 

points. Then the equation of the plane is: 
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to solve the Eq. 1  with constant in Eq.2, using Lagrange 

method, we get: 
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We solve the nonlinear system: 
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by choosing arbitrary value of D. 

2.3 Estimating Normal Vectors 

Now, we have the planar surface that approximates pi
t with a 

planar function using the least square method. e.g. planar 

surface:  

1min;)( 222
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where [xi,yi,zi] are the coordinates of 
ip  and A,B,C,D  are the 

coefficients to be found. 

Then the normal vector n


can be computed from the relation 
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2.4 Point data partitioning 

Let the set of points which we want to handle is put in an 

arbitrary array with x, y and z direction. We used a binary 

search data structure to subdivide the point data as in Fig.(1).  

The point data is subdivided into two cells, which, each cell 

can be subdivided into two cells if it is need.  We refer to the 

partitioning stage as levels, so the set of points is partitioned 

based on ℓ levels, where levellevellevel ,...,, 10  are the level’s 

partitioning and 2,....,2,2 10   are the corresponding cells 

number respectively.  

Algorithm 1: 

1-  j=0, i=1 

2- Sort the points in A1 corresponding of x-

direction in an array 

3- Partition the data into two cells and put 

them in the sub-arrays A1 and A2 

4- Go to algorithm 3 to check the data(i.e if 

the cell needs to partition again or not)  

5- Sort the points in A1 corresponding of y-

direction 

6- Partition the points into two cells and put 

it into the sub-arrays B1 and B2  

7- Go to algorithm 3 to check the data(i.e if 

the cell needs to partition again or not) 

8- Sort the points in A1 corresponding of z-

direction in an array 

9- Partition the points into two cells and put 

it into the sub-arrays Ci and Ci+1  

10-  Goto 6 to select B1=B2, i=i+2; 

11- Goto 6 to select B1=B2, i=i+2; 

12- j=j+1. 

13- Repeat the statements from 2-6 for each Ci  

until desired 

j.  

 

Fig. (1): The point data is subdivided into 23  cells.                                            

 

2.5 3D point’s reduction 

In the following computations, we will always use the 

normal vectors ni assigned to the data points. The 3D points 

are subdivided into cells, where each cell contains some 

points. In each cell, we use the normal vectors in


 assigned 

to the points ,...,2,1,ipi ,  where  is the number of points 

in cell and has been obtained automatically based on the part 

of shape. After that an arbitrary direction is selected as a 

reference direction. Here, we use the unit vector of the x-

axis (one can use y-axis or z-axis) of the coordinate system 

as the reference direction, i.e we used )0,0,1(N


.  After that, 

we compute the angles ,...,2,1,ii  between N and

,...,2,1,ini


. The angles between the reference direction and 

Set of points 20 cellLevel0

23 cell

22 cell

21 cell
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the normal vectors are estimated, where the angles with 

smallest value 
min

and the biggest value max  are selected.  

If the value || minmax  is greater than a prescribe value , 

the cell is partitioned again. Otherwise the median angle is 

selected, where it is easy to find the corresponding normal, 

whereby the corresponding 3D points are chosen as the 

representative points of the cell. 

Algorithm 3: 

1- j=1  

2- Select the arbitrary reference direction 

3- Select the normal vectors ,..2,1, ini


., , 

assigned to the    points of the cell jC  

4- Estimate the angles between a reference 

direction and the normals. 

5- If minmax , apply algorithm 2 to 

subdivide the cell, where  is a prescribed value 

6- Select the median angle. 

7-  Find the corresponding unit normal 

vectors of the angle 

8- Select the corresponding point 

9- Remove the residual points in jC  

10-  j=j+1 

11-  Repeat step 3 through 6 until all the cells 

in the array are processed 

12-  Stop 

3. Experimental results 

The proposed technique is experimented using different 

types of part surfaces and the results are discussed. It was 

tested with real data measured using laser scanner and 

simulated data. Before applying the reduction algorithms, 

the farther noise point from the initial point cloud is 

removed. These tests have shown, for surface normal 

computation that the best neighborhood size for point set 

with noise sampling is in the range of 10-20. If we used a 

bigger neighborhood size 20, the normal vectors on smooth 

surfaces was not estimated better than with k = 10.  If the 

data contains noise or they consists of scan lines with big 

distances between scan lines and small distance within one 

scan line, the neighborhood size have to be enlarged to 

about k = 6. 

Table (1) shows some results that were experimented on the 

proposed data reduction technique. We have fitted the 

planes, spheres, and cylinders to the data using the Least 

squares method that is presented at [10] pre and post 

applying the proposed method. The average of the distances 

(the error) between the surface and the points are computed 

after and before fitting, where the reduction degree is the 

number of passing the data to the proposed algorithm 

without modifying the thresholds. We have selected 10k  

as the best neighborhood size for a point set. The parameter 

 has been obtained automatically based on the part of 

shape.  It varies from cell to another depending on the size 

of a cell. For that non-uniform cells in which the size of 

cells can be varied based on the part shape are created.  

After testing of many examples, we noted that the selection 

of the parameter to be 1.0 .  We note that when this 

parameter is decreased, the number of output data points is 

extremely reduced.  

Fig.(2a) shows the point cloud of a planar surface (it is part 

from mechanical object) and it consists of 1654 points.  The 

points is fed to the proposed algorithm and the result is 

presented in Fig.(2b). Since the examples in Fig.(3a,4a) 

show the 1854 and 2676 points has obtain from two 

different cylinder parts. The proposed algorithm has been 

tested by those two parts. Fig(3b, 4b) shows the result after 

applying the algorithm to the point cloud of a cylinder 

surface. The data in Fig.(4b) has been passed to the 

algorithm again and the result is presented in Fig.(4c). In the 

last example, we have tested the proposed method by 

simulated data to show the applicability of the method. In 

Fig.(3b) the sphere data is generated by sphere equation and 

add 50 noise points to the data. The data is passed to the 

algorithm and the output result has been shown in Fig.(3b). 

The results show in table (1) that the fitted surface is better 

than that one before. For example, the cylinder segment (has 

2676 points) is fed to our algorithm. We note, that it has 

1900 points if the reduction degree is 1. The part with 1900 

points is reduced again and the result is the part with 570 

points (the reduction degree in this case is 2). However, in 

every reduction step a surface is fitted to the data point and 

the error is estimated.  We noted that before reduction the 

error is 1.0094, after applying the algorithm to the data, the 

error became 0.00643. The output data is fed again to the 

algorithm, The data is fitted to the cylinder surface.  Then 

the error became 0.00048. This shows that the propped 

method is very faithful to obtain accurate results while 

keeping quality point data.  

4.  Conclusion 

A fast technique for data reduction is presented, where some 

experimental results of that technique are given to show the 

ability of the developed method. We have demonstrated that 

when surfaces are fitted to reduced points produced by the 

proposed technique, the fitting results are improved from 

those found by using the entire data point, even with quite 

large factors of data reduction. The proposed method 

overcomes the limitation of uniform grid [12] method by 

using the normal vectors assign to the points, which give 

information about part shape. Thus, all edges are preserved, 

and all differential properties can be estimated without 

introducing errors even with the noisy cells.  Also, upon 

calculating the normal vectors of all points, a planar grid is 

generated. The size of a grid is defined automatically 

corresponding to the user threshold and grid size depends on 

the intended data reduction ratio for the given part shape.  
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Table (1): Some data sets have been tested by surface fitting. 
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0.00643. 

 

 

Fig. (5a): Shows 543  points   (include 

50 noise points, simulated 

data), it has fitted to sphere, 

the error is 2.0054. 

 

 

 

Fig. (4c): The reduction degree is 2,                  

it becomes 570 points and is  fitted to 

cylinder and  the error is  0.00048. 

 

 

Fig. (5b):  Shows the result 287 points after  

running the algorithm, the 

result has fitted to sphere and 

the error is 0.0034. 
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