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ABSTRACT 

 

The low-temperature energy contributions of a binary 

KK 4041  system are studied. The studies are done in both Gross-

Pitaevskii (GP) and Thomas-Fermi (TF) approximations. The Gross-

Pitaevskii (GP) analysis for KK 4041  system showed that for positive and 

negative scattering lengths, the system exhibits positive and negative 

energies respectively. However, in both cases there is stability of the 

system away from the centre of the condensate. It was found that the GP 

energy is the major contributor to the total energy of the 

KK 4041  system due to the mean-field interactions. The 

KK 4041  system showed a critical condensate radius of about 6 

oscillator units at which the system spontaneously moves from the 

negative attractions to the positive attractions regime where there is 

more stability against collapse. In the TF approximation, the kinetic 

energy is not affected by the interaction between the two types of 

particles. Just as in the GP case, there is also the stability of the system 

away from the centre of the condensate. 

 

INTRODUCTION 

 

The total energy of a macroscopic system is derived from the properties of microscopic constituents of a 

system [1,2] There are two approaches to the study of statistical mechanics; the independent particle model in 

isolated systems and the ensemble model involving a large collection of systems. Bosons are atoms with even sum 

of the number of elementary particles and possess integral spin angular momentum. Fermions are atoms with an 

odd sum of the number of elementary particles and possess odd half-integral total spin angular momentum. 

 

The origins of Bose-Einstein theory started with Bose[3] and Einstein in 1925. Bose studied photons but 

Einstein extended the ideas to atoms, where at low temperatures particles occupy the Zero momentum state 

(ZMS). Following the first experimental realization of BEC in a dilute vapour of Rb87 by Wieman and Cornel[4] in 

1995, a great deal of experimental and theoretical progress has been made in the field of ultra-cold atomic gases. 

Ketterle and Hullet [5] obtained BECs in dilute gases of Na23
 and Li7

atoms. Trunscott et al [6] reported a binary 

BEC in LiLi 67  and KK 4041   mixtures.  

 

The objectives in this paper are to develop effective mean –field Hamiltonian for bosons, fermions and for 

a mixture of bosons and fermions on the basis of GP and TF equations. The results of key derivations and analysis 

of particle and energy distributions are presented. Also the influence of boson-boson and boson-fermion 

interactions on the stability of Bose-Fermi condensates is studied. 

 

Theoretical Derivations  

 

Gross-Pitaevskii Approximations 
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In studying BECs upto first order approximation, a non-linear Schrodinger equation also called the GP 

equation is given as  
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extV  is the external trapping potential and g is a measure of the strength of interaction between the two 

types of particles.GP equation has been used to study the groundstate properties of the bosonic component of the 

condensates. Roth and Feldmeir [8] modified GP equation to include the mean-field interaction generated by 

fermionic cloud. Tripenbach et al studied the structure of binary condensates by numerical simulations of coupled 

GPEs. 

 

Bogoulibouv Approximations  

 

Bogoulibouv approximations were introduced due to the inadequacy of GP equation. It is used to study the 

non-perturbative interaction between the condensate and the non-condensed atoms. Legget [10,11] showed the 

relation between the GP and the Bogoulibov approximation. 

 

Microcanonical Ensemble 

 

A microcanonical ensemble model with pair interactions is used. The entropy, Internal energy and specific 

heat are obtained in terms of the partition function. The distribution of bosons in the j-th energy level is obtained as  
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            Eq. (2) 

 

and for fermions 
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  , j  is the energy of the stationary state and b  and f  are the 

chemical potentials for bosons and fermions, respectively . The partition function, Q, for an ensemble of bosons 

and fermions is 

 

 






 




 kT
nnQ

bf

j

jfjb


exp

1

 

     







































 













 














 














 






1
2

expexp1

2
exp1

2
exp

1

2

kTkT

kT

kT jfb

j

jb

jfb

j

j

j

j









      Eq. (4) 

 

Entropy, Internal energy and Specific heat are obtained from the standard textbook [1,2] equations 
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A mean-field description of two component Bose-Fermi mixture is considered. The time-independent 

coupled GPEs [13] are written in the standard form for bosons as  
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and for fermions as 
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The boson –fermion and boson-boson interaction strengths are, respectively, defined as  
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And 
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where bfa  and bba  are the boson-fermion and boson-boson s-wave scattering lengths respectively. 

 

Total energy of the Bose-Fermi system is obtained from the equation  
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            Eq. (12) 

 

The commonly used wavefunction in the GP analysis is the one proposed by Legget [8] and is given as  
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By using eqs. (8, 9,10,11,12 and 13), the total energy for the Bose-Fermi system become 
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In eq. (14) Ei is a special function called the Exponential Integral and is defined in standard form as  
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Thomas-Fermi approximation for a Bose-Fermi system 

 

The particle density for bosons and fermions are, respectively, given as  
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For partially overlapping wave functions 0)( 2  fbbbff UUU .The combined interactions among fermions 

and among bosons is greater than the interactions between bosons and fermions. This is what leads to the 

existence of the two types of particles or a partial overlap in the wavefunctions representing the two types of 

particles. Similarly the separated wavefunctions would normally occur when 0)( 2  fbbbff UUU . Here the strength 

of the boson-fermion interaction is dominant over boson-boson and fermion-fermion interactions. Consequently this 

leads to the separation of the two types of particles or the separation of their wavefunctions. The number of 

bosonic and fermionic atoms in each condensate are given, respectively as  
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From eqs. (16, 17, 18 and 19) the bosonic and fermionic density were again, respectively, obtained as 
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The eqs. (20 and 21) indicate how the boson and fermion densities vary with the Thomas-Fermi radius R. 

In eq. (20) the density of bosons has a part with linear dependence on R and a part that has got cubic dependence 

on R. For all values of R>0, we have a finite density for the bosons within the trap. For R=0, then we have a region 

in which there are completely no bosons in existence. Similarly eq. (21) shows that the fermionic density has linear 

dependence with relative Thomas-Fermi radius (R0-R) as well as linear dependence on (R0
3-R3). Clearly when R=R0 , 

then there are no fermions in existence. So fermions would only exist for R<R0. So at the two points when R=0 and 

R = R0 are the points at which we obtain completely separated regimes for bosons and fermions in the TF 

approximation. 

 

Stability of boson-fermion mixed condensates 

 

Let us consider the case of a trapped boson-fermion mixed condensate at absolute zero temperature with 

positive and negative scattering lengths. In the GP theory we use the boson-order parameter [14] , the Gaussian 

ansatz )(x  as  

  

































R

x

R

N
x b

4

3
exp

2

3
)(

2
2

1

3

2

3


        Eq. (22) 

 

with   being the oscillator length. 

 

Fermion density distribution is  
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The total energy was evaluated in terms of the reduced oscillator energy as  
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where  is a measure of the ratio of boson-fermion and boson-boson coupling constants or interaction strengths 
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Analysis 

 

We analyzed eq. (24) for the case of KK 4041   system and obtained the following graph:- 
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Fig.1: Gross-Pitaevskii energy for KK 4041   system (Positive scattering length) 
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Gross-Pitaevskii energy includes the kinetic energy, harmonic oscillator energy and the boson-fermion 

interaction energy all calculated in the GP approximation. For the 41K-40K system considered here, the positive 

scattering length between 41K and 40K atoms implies repulsion between the particles. R being a width of the 

condensate, we get the result that near the centre of the condensate the interactions are much stronger leading to 

an almost infinite amount of energy. The system stabilizes as we move away from the centre of the condensate. 

Stability is usually associated with the lowest energy in the system. 

 

Fig.2: Variation of Thomas-Fermi energy for KK 4041   system 
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E1 is the kinetic energy, E2 harmonic oscillator energy and E3 is the Bose-Fermi interaction energy in the 

Thomas-Fermi approximation. 

 

In the Thomas-Fermi approximation and in the low density limit as used in our calculations, the kinetic 

energy contribution is expected to be large compared to the harmonic oscillator and mean-field contributions. This 

is because the kinetic energy is not affected by the interaction between the two types of particles. Just as in the 

Gross-Pitaevskii case, there is also the stability of the system as we move away from the centre of the condensate. 
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Fig.3: Total energy of KK 4041   system (positive scattering length) 
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The shape of the graph is almost similar to that obtained in Fig. 5 for the Gross-Pitaevskii energy. This is an 

indication that the Gross-Pitaevskii energy has a predominant contribution to the total energy. Positive scattering 

lengths lead to positive energy and also there is stability of the system away from the centre of the condensate.  

 

Next are the results obtained when we consider the negative scattering lengths between the 41K-40K 

atoms. It is only the Gross-Pitaevskii energies and the corresponding total energies that were evaluated.  This was 

due to the realization that the Thomas-Fermi energies almost remained unaltered even when the sign of the 

interaction between the bosons and fermions was changed. 

 

Fig.4:  Gross-Pitaevskii energy for a KK 4041   system (negative scattering length) 
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In comparison with the result shown in Fig.5, it was realized that by changing the sign of the scattering 

lengths, the Gross-Pitaevskii energy changed from the positive values to the negative values. Negative scattering 

lengths results in negative energy. Nevertheless, the stability of the system away from the centre of the condensate 

was not altered. 
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Fig. 5: Total energy of a KK 4041   system (negative scattering length) 
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The negative scattering lengths also altered the sign of the total energy of the 41K-40K system from positive to 

negative values. There was a cross over in the total energy at about R= 6.0 oscillator units, which can be referred to 

as the critical condensate radius.  This indicated that in the absence of a positive scattering length (repulsion 

between the particles), the system can spontaneously move into a regime of positive interactions between the 

particles. 

 

CONCLUSIONS 

 

GP analysis for KK 4041  system showed that for positive and negative scattering lengths, the system 

exhibits positive and negative energies respectively. However, in both cases there is stability of the system away 

from the centre of the condensate. GP energy is the major contributor to the total energy of the KK 4041  system 

due to the mean-field interactions. The KK 4041  system showed a critical condensate radius of about 6 oscillator 

units at which the system spontaneously moves from the negative attractions to the positive attractions regime. 
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