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ABSTRACT: In first part the optimal control of singular system with a quadratic cost functional using walsh function 
is considered. After introducing walsh function in the beginning we develop an operational matrix for solving singular 
state equations. To demonstrate the validity and applicability of the technique, a numerical example is included. 
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I.INTRODUCTION 
 

Operational matrices were constructed using orthogonal functions for solving identification and optimisation problems 
of dynamic systems, was initially established in 1975 when the Walsh-type operational matrix was constructed by the 
present authors(Chen et al.,1965).Since then, many operational matrices based on various orthogonal functions, like 
Laguerre (Hwang et al.,1981 & King et al.,1979),Legendre(Chang et  al.,1984),Fourier(Paraskevopoulos et al.,1985), 
and, Chebyshev (Paraskevopoulos et al.,1985), block pulse(Chen et al.,1977) had developed. Orthogonal functions  
deals with various problems of dynamic systems as it reduces the problems to those of solving algebraic equations. The 
operational matrix of integration eliminate the integral operation as in this approach differential equations are converted 
into integral equations through integration(Leila Ashayeri et al.,2012). 
 
Singular system model is necessary for description of such a system which leads to the violation of casuality 
assumption. Singular systems also arise naturally in describing large scale systems; examples occur in power and 
interconnected systems(Iman ZamanI et al., 2011). 
 

Optimal control of singular system via orthogonal functions has been presented, among others, by Balachandran and 
Murugesan(K. Balachandran et al.,1992), Shafiee and Razzaghi(M. Shafiee et al.,1998) and Razzaghi and Marzban (M. 
Razzaghi et al., 2002). 

 
Very few work exist in the field of singular system therefore many challenging and unsolved problems have to face. 
 

II. PRELIMINARY DEFINITION 
 

A. Walsh function and its properties 
   
 A periodic function may be expanded into Fourier series. Analogously speaking, afunction, f(t), which is absolutely 
integrable in (0,1] may be expanded into series of Walsh. 

0 0 1 1( ) ( ) ( ) ( )n nf t c t c t c t                                            (1)  
 
where         
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 0 1( ), ( ) ( )nt t t    are Walsh functions and are a set of square waves which are orthonormal. 

 
It is seen that 
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where 
 

2log 1ik                       (5)
 

 
where    means taking the integer part of  and 1 1, , ,k kb b b  is the binary number expression of i and ( )kr t  is 
the Rademacher function. 
To draw the wave form of any Walsh function becomes a trivial matter if we use the above mentioned decomposition 
technique. 
Let us then return to the Walsh coefficient evaluation for a function. Consider a given function f ( t ) = t. It is desired to 
expand it into Walsh series. Substituting the function f(t)= t into (2), we have 
 

1 1 1 1 1
0 1 2 4 82 4 8 16 32( ) ( ) ( ) ( ) ( ) ( )f t t t t t t t            

 
B. Integration and operational matrix 
 
  In this section we will derive a method by which we can perform any integration by multiplying a constant matrix. 
Let us take 0 1,.., 4,    and integrate them; we will have various triangular waves (Z.H.Jiang et al).If we evaluate the 
Walsh coefficients for these triangular waves,  the following formula for approximation will be obtained: 
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(4) (4x 4) (4)dt P                                                                    (6) 

 
The subscript means the dimension taken. It is preferable to take 2 , where   is an integer, as a dimension number. 
Making this choice will enable us to obtain simple results and easier calculation(Chih-Fan Chen et al.,1975). 
  It is noted that 
                    

0dt t  ;                                                                                             (7)  

Therefore the Walsh coefficients of 0dt   can be found. 
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III. SINGULAR SYSTEM 
 
Consider a singular system described by 
 

( ) ( )Ex Ax t Bu t                                                                   (8) 
 
where   nx t R is the state vector,   ru t R is the control vector. E, A and  B are matrices of appropriate 
dimensions. If det E=0 then the system described by (8) is called generalized state-space or singular systems(Chih-Fan 
Chen et al.,1975).. 
   Certain features of this case that are of special interest  may be list, and will serve as points of contrast with the case 
of nonsingular case(G. C. Verghese et al.,1981). 
 

1. The number of degrees of freedom of system is reduced to 
f rankE                                                                          (9)  

2. The transfer function G(s) may no longer be strictly proper. 
3. The free response of the system in this case exhibits exponential motions. In addition, however  it may contain 

impulsive motions. 
 

Definition: Singular system is regular if and only if there exists a scalar  such that 1( )E A   exists. 
 
OPTIMAL CONTROL OF SINGULAR SYSTEM 
         
In this section, we consider the LQR problem for linear time-invariant singular systems. Suppose that the optimization 
problem can be stated as follows: 
minimize  

0

1 (x Qx )
2

ft
T T

t

J u Ru dt                                                                 (10) 

           
 and x Ax Bu                                                                                 (11) 
 
For simplicity, we assume that Q and R are symmetric positive definite matrices. The Hamiltonian function is given by 

1(x,u, , ) (x ) (Ax )
2

T T TH t Qx u Ru Bu                                 (12) 

Necessary  conditions imply that 
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that is, 
 TQx A     ,                                                                              (14)                     

 1 Tu R B                                              (15) 
where  satisfies the following equation:     

1 T

T

xx A BR B
Q A 

    
           



                                        (16) 

and the boundary condition are specified as 
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0(0)x x                               (17) 
 

( ) 0ft                               (18) 

 
let      Sx                                            (19) 
where S  is a constant matrix to be determined. Put this in (13)  we get 

1 Tu R B Sx                                                           
(20) 
 
Substituting (20) in (11),we get 
 1( S)Tx A BR B x                              (21)
                         
By (14), (15), (19), (21), we have 
 

1S( S)T TA BR B x Sx Qx A          
TQx A Sx                                    (22) 

that is 
1(SA A ) 0T TP SBR B S Q x                                                 (23) 

Since this is true for any x , we obtain the following Ricatti equation for singular system: 
 

1SA A 0T TS SBR B S Q                                                      (24) 
By (20) , the optimal state derivative feedback control is given by (Yuan-Wei Tseng et al.,2013): 
 
u Kx    ,            1 TK R B S                                                       (25) 
And the closed loop system becomes 
 

(A )x BK x                                                                                   (26) 
 

IV. WALSH SERIES SOLUTION TO THE PROBLEM 
 

Firstly we normalize the problem because Walsh series is defined in the 0 to 1 interval  
/ fp t ;                                                                                           (27)            

Then (16) becomes 
                   

(p)(p)
(p) (p)f
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 
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
   0 1p                                           (28) 

Next, assume (p)x and (p)p to be expanded into Walsh series and we can determine its coefficients. 
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x
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where C is an 2nXm matrix, and (p) ,an m-vector. 
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To perform integration on (29) eqn (6) is applied: 
 

 
(p 0)(p)

(p) (p)
0(p) n

xx
CP 


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    
   

                                           (30) 

 
Substituting (30) and (29) into (28) gives 
Defining k as 

 
2 2

(p 0)
0 ,0 ...0n n n

x
k

 
   

 
                                                                       (31)                           

              
1[ ]fC k P t M                                           (32) 

Solving  (32) for C ,we obtain the Walsh coefficients of the rate variable (p)x  rate co-state variable (p)p .Then 
substitute them into (30) .The answer of (p)x  and (p)p in terms of Walsh function are finally obtained. 

 
V. RESULTS 

 
Let us consider the example 
 

1 0 0 1 0
0 0 1 0 1

x x u     
      

     
  

 
The performance index is specified as 

1
2 2 2

1 2
0

( )dtJ u x x      

The  the state variable x(t) and optimal control law u(t) are computed with m=4. Fig. 1, 2, 3. shows the result. 
 

 
                   

Fig.1 First State Variable 
 
Fig.1 shows the trajectory of  1( )x t  for m=4.The result can be improved by using higher values of m.  
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Fig.2 Second State Variable 
 

Fig.2 shows the state trajectory of 2 ( )x t for m=4.If resolution increases then time difference also increases. 
 
 

 
 

Fig.3 Control Input 
 

Fig.3 shows the trajectory of optimal control u(t) for m=4 and t  [0,1).This is new approach  for obtaining the optimal 
control of singular systems with quadratic cost function. 
 

VI.CONCLUSION 
 

In this paper, a technique has been developed for obtaining the optimal control of singular systems with quadratic cost 
functional using walsh functions. The proposed approach is computationally simple. Since walsh functions are 
piecewise constant, one has to choose a large value for m in order to improve the accuracy. 
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