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ABSTRACT: Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested 

periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically 

or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of 

such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different 

morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) 

allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The 

method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent 

noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results. 
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I.INTRODUCTION 

 

Measurement, acquisition and processing of quasi-periodic signals, may be affected by many noise sources. On the one 

hand, there are noise sources generate distortions, which are always present, can be periodic or exhibit a homogeneous 

behaviour. They affect all signal cycles and are generally modelled as stochastic processes (Gaussian, Poisson, Markov, 

etc.) with a known probability function using the principles of statistical independence and ergodicity [1]. These 

distortions include those due to the following noise sources: instrumentation noise(thermal noise, electrostatic noise, 

electromagnetic noise, processing noise due to stages of analog to digital conversion, environmental noise and 

interferences) [1-2], improper usage or improper configuration of technology (incorrect colocation of transducers and 

sensors, erroneous selections of gains,attenuations, filters cutoff frequencies, offset settings etc.) [2] and noise due to 

own target application (respiratory motions, motions during cycles of systole and diastole of the heart, patient motions, 

etc.). These types of noise sources have been extensively studied. The papers describing the state of the art includes 

plenty of methods and systems to their reduction/attenuation.Some of the methods used to attenuate them and to 

improve de SNR (Signal to Noise Ratio) are:analog and digital classical filtering techniques (high-pass, low-pass and 

band-pass), advanced filtering techniques, (optimal and adaptive filtering), time-scale and time-frequency 

transformations, neural networks, averaging techniques, higher order statistics, fuzzy logic, spectral subtraction, linear 

prediction, Bayesian estimation and many others.For the purposes of this paper, all these noise sources with the above 

characteristics will be called inherent noise. 

 

On the other hand, there are other type of noise sources that produce distortions that are not manifested periodically and 

homogenously, not affecting all signal cycles.For example: the presence of emboli generates a distortion that will not 

be distributed at all cycles of the blood flowsignal, the presence of certain cardiac events did not affect all cycles of 

electrocardiography (ECG) signal, etc.These distortions cannot be characterized statistically or modelled with a known 

probability function.Such distortions can generate larger deformations to a given segment of the signal, producing a 

total loss of its morphology, misleading the characterization of the signal under analysis. So, the identification or 

detection of these types of distortion constitutes one of the most principal challenges in signal processing [3]. 

 

The aim of this paper is to propose a method for identifying the cycles of the studied signal which have a different 

morphology from the rest.In other words, identify those cycles, which, besides being affected by the inherent noise, are 

affected by distortions that occur on a “casual manner”. 
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II.RELATED WORK 

 

One of the most widely used techniques for identifying non-repetitive and/or periodic patterns or distortions has been 

the wavelet transform [4-5].This technique adapts a wavelet pattern to the characteristics of the signal distortion to be 

identified.This has been used for identification of epileptic spikes in electroencephalography (EEG) signal [6-9], to 

identify emboli in the blood flow signal [10-13], to identify arrhythmias in the ECG signal [14-16], for identifying 

flaws in industrial materials (metals, concrete, etc.)in the ultrasound signal [17-19], and many other scenarios. 

 

The main disadvantage of detection methods based on wavelet is that they depends on the shape and characteristics of 

pattern to be identified [5], which is not always possible in many real applications.For example, during the verification 

of a graft, in coronary revascularization procedure, a motion between the ultrasound transducer and the surface (blood 

vessel 2 to 4 mm in diameter) may cause, in the current acquired cycle, a distortion whose shape is unknown.This 

distortion may eventually affect one or more signal cycles, and can show different morphology in the affected 

cycles.This dependence constitutes a limitation for the methods based on wavelets in real-time applications. 

 

The method, in this paper, does not needto identify the distortion characteristics (amplitude, frequency, power, 

duration, etc.).Indeed, it is independent of the characteristics of the particular application and of the signal carrying 

useful information [3]. 

 

III.PROPOSED METHODOLOGY AND DISCUSSION 

 

A.Quasi-periodic signals and noise sources 

 

The signal 𝑥 𝑡 is called quasi-periodic with period T if it can be represented, according to a random signal 𝑛 𝑡  and to 

a deterministic and periodic signal 𝑠 𝑡 , as follows:  

 

𝑥 𝑡 = 𝑠 𝑡 + 𝑛 𝑡  1  

 

Thekcycles of the 𝑥 𝑡 signal, with length T, can be partitioned as follows: 

 

𝑥𝑗  𝑡
′ = 𝑥 𝑡 , for 𝑡 ′ ∈    0, 𝑇 , 𝑡 ∈  𝑗 ∙ 𝑇,   𝑗 + 1 ∙ 𝑇 , 𝑗 = 1, 2, 3, … , 𝑘           2    

 

𝑥𝑗  𝑡
′ = 𝑠 𝑡 ′ + 𝑛𝑗  𝑡

′ , for 𝑗 ∈   1, 2, … 𝑘 and𝑡 ′ ∈  1, 2, … 𝑇  3  

 

In (3), the signal 𝑠 𝑡 ′ is invariant cycle to cycle, and it carries the useful information. 𝑛𝑗  𝑡
′  is associated to the 

partition, in the cycle j, of the random signal 𝑛 𝑡 . Also, 𝑛 𝑡  will be used to describe the noise sources presented in the 

measurement, acquisition and processing of the signal 𝑠 𝑡 ′ . For the purpose of this paper, the random signal 𝑛 𝑡  will 

be divided into two categories. The first category includes the noise sources previously called inherent noise.The set of 

this noise sources will be represented as 𝑛𝑐 . The second category includes the noise sources, which have the following 

characteristics:theydo not occur in all cycles of the signal and can cause the major deformations in the cycleswhere they 

occur, including the total loss of their morphology. Furthermore, they are not distributed regularly, they cannot be 

modeled by a known function probability distribution or statistically characterized, and it is not possible to estimate 

when or where they will be presented. The set of this noise sources will be represented as 𝑛𝑒 . 

 

B. Mean square error  

 

Taken into account the above noise sources, the k cycles of the signal 𝑥 𝑡 can be represented as follows: 

 

𝑥𝑗 = 𝑠𝑗 + 𝑛𝑐,𝑗 + 𝑛𝑒,𝑗 , for 𝑗 = 1, 2, … , 𝑘           4  

 

In (4), each cycle has a length of L samples and the deterministic signal 𝑠 is considered invariant in each cycle (that is, 

𝑠1 = 𝑠2 = ⋯ = 𝑠𝑘). Thus, the mean square error between the k
th

 cycle and the average of the previousacquired cycles is 

given by: 
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.𝑒𝑘 =
1

𝐿
∙   𝑥𝑘 −

1

𝑘−1
∙  𝑥𝑗

𝑘−1
𝑗=1  

2
𝐿
𝑡=1  5  

 

The noise sources 𝑛𝑐are modeled as Gaussian stochastic processes (zero mean) under the principles of ergodicity and 

statistical independence, therefore, its power in the analysis cycle is equal to its variance; that is, 𝑃𝑐,𝑗 = 𝜎𝑐,𝑗
2 = 𝜎𝑐

2, for j 

= 1, 2, …,k. If the power of noise sources 𝑛𝑒  is called 𝑃𝑒,𝑗 , for j = 1, 2, …,k and substituting (4) in (5), it follows that 

the mean square error is given by: 

 

𝑒𝑘 =
𝑘

𝑘 − 1
∙ 𝜎𝑐

2 + 𝑃𝑒,𝑘 6  

 

As shownin (6), 𝑒𝑘  depends on cycle k under analysis, and if the variance of the noise 𝑛𝑐  is known, it is possible to 

determine if a cycle has been affected by any source 𝑛𝑒  (that is, 𝑃𝑒,𝑘 ≠ 0), because: 

 

𝑒𝑘 >
𝑘

𝑘 − 1
∙ 𝜎𝑐

2 7  

 

would be satisfied. It should be noted that in each estimation of 𝑒𝑘 , using (5), there will be a fluctuation in their own 

value due to estimation errors.Therefore, when (7) is verified, a region of uncertainty will emerge in (6) where it is not 

possible to state with certain whether there is any distortion 𝑛𝑒(that is, 𝑃𝑒,𝑘 ≠ 0) or an error has occurred due to the 

estimation of 𝑒𝑘 .To explore this uncertainty and the behavior of the estimation of 𝑒𝑘 , the random variable 𝐸𝑘  is 

introduced. The variable 𝐸𝑘  represents the expected value of 𝑒𝑘when 𝑃𝑒,𝑘 = 0 in (6), and is given by: 

 

𝐸𝑘 =
𝑘

𝑘 − 1
∙ 𝜎𝑐

2 8  

 

Since there is some probability that no𝑛𝑒distortions have occurred when 𝑒𝑘 > 𝐸𝑘 , the parameter 𝛿 is introduced. 

Therefore, it will be said that any distortion 𝑛𝑒  has occurred if and only if: 

 

𝑒𝑘 ≥ 𝛿 ∙ 𝐸𝑘 9  

 

The parameter 𝛿will be called noise factorand it will control the identification of cycles affected by noise𝑛𝑒 . The 

product 𝛿 ∙ 𝐸𝑘  will be called detection thresholdand is given by: 

 

𝑢𝑘 𝛿 = 𝛿 ∙ 𝐸𝑘 = 𝛿 ∙
𝑘

𝑘 − 1
∙ 𝜎𝑐

2 10  

 

The choice of parameter 𝛿 is critical to the correct functioning of the method. It should be noted that very high values 

for that parameter are not suitable because the detectionthreshold (expression (10)) will increase. This will cause that 

fewer affected cycles by noise 𝑛𝑒will be detected; so, there would be a significant increase of false negatives (affected 

cycles that are not detected). Also, very small values (typically close to one) for the parameter 𝛿 will not be suitable 

due to unaffected cycles could be classified as affected; so, there would be a substantial increase in false positives. 

 

C. Noise power estimation 

 

For the identification of the cycles, which are affected by the noise 𝑛𝑒 , is necessary to find the 

detectionthreshold𝑢𝑘 𝛿 as shown in (10). For this, is necessary to estimate the variance of the noise sources 𝑛𝑐 . Due to 

the own characteristics of this kind of noise, a good method for achieve that is by using the wavelet decomposition. 

This method have been extensively used for denoising in many scenarios. In [20-21] the authors demonstrated that the 

first level decomposition of a signal using wavelet is enough to obtain a good approximation of the noise level in this 

signal. The 

noise level is estimated by the direct relationship between the absolute value of the mean of the detail coefficients and 

the factor 0.6745. 
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D. Selecting the parameter𝜹 

 

For the purposes of this paper, the selection of parameter 𝛿 is not considered crucial. Therefore, the implemented 

techniques for the selection and adjustment of this parameter will not be exposed here [3]. Furthermore, the values used 

for 𝛿 were selected empirically. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
Simulations 
 

To illustrate how the above expressions would be used, a 15-cycles random signal with noise 𝑛𝑒  in the cycle 12 is taken 

as example. The objective is, thus, identify the affected cycle by noise source 𝑛𝑒 .Therefore,𝑒𝑘  will be estimate for k = 

2, 3,…, 15 using (5), then the noise variance 𝜎𝑐
2is estimatedas [20-21] to finally obtain 𝐸𝑘 . For a given noise factor 

value, if (9) is satisfied, then the corresponding cycle could be consider affected by a distortion cause by noise 𝑛𝑒 . In 

Fig. 1 is it shown, with points, the result of 𝑒𝑘estimating using (5). The experiment was done over 500 observations of 

a random signal with 15 cycles of 80 samples each.The experiments were simulated with a Gaussian noise component 

of variance 𝜎𝑐
2 in all cycles of the signal. The red dashed line and the blue dashed line,in Fig. 1, represent the 𝐸𝑘  

valueand the detectionthreshold for𝛿 = 1.5 respectively. In the cyclek = 12,it has been added a noise component𝑛𝑒  with 

power 𝑃𝑒 = 1.25 ∙ 𝜎𝑐
2. 

 

 
Fig. 1. Representation of the 𝑒𝑘estimationfor 500 observations of the 15 cycles of a random signal and noise component 

𝑛𝑒  with power 𝑃𝑒 = 1.25 ∙ 𝜎𝑐
2in cycle 12. 

 

It should be noted also in Fig. 1 that there are 𝑒𝑘estimates values above the detection threshold (dashed line) in cycles 

from k = 2 to k = 11 and from k = 13tok = 15. That is, in these cycles, it has been incorrectly detected a noise source 

𝑛𝑒(false positive). For cycle k = 12 there are 𝑒𝑘estimates values below the detection threshold.In this case we will say 

that the presence of the noise source 𝑛𝑒(false negative) is not correctly detected. Therefore, it exists an overlap of the 

affected and unaffected solutions by the noise 𝑛𝑒 , which will decrease as the noise power 𝑃𝑒 increases. 

Even with this overlap, it was possible to identify the cycle 12 in Fig. 1 as affected by the noise source 𝑛𝑒 , which is the 

main objective of the proposed method. This detection is useful for eliminating the affected cycle of the signal analysis 

and of the extraction of important features for the indexes and parametersestimationas will be shown below. 
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Real applications 
 

Blood flow signal 

 

The method is applicable over any quasi-periodic signal. Fig.2 shows the envelope of maximum frequencies 

(normalized with respect to its maximum value) of a Doppler blood flow signal sampled at 11.025kHz.  

 

 
Fig. 2. Envelope of maximum frequencies of a Doppler blood flow signal.  

 

As it can be seen in Fig. 2, there are segments (one or more cycles marked with red rectangles) of the blood flow signal 

exhibiting a completely different morphology from the rest and they are severely distorted. Affected cycles do not 

contain clinically useful information. It should be noted that these distortions are not periodic, and they not affect the 

entire signal (all cycles), therefore we can say that are generated by a noise source𝑛𝑒 .The goal is, then, to identify the 

cycles corresponding to these signal segments. This will allow exclude them of the signal analysisand estimate the 

clinical indexes needed for a correct diagnosissafely. 

For the application of the method, the first step is the delimitation of the signal cycles as indicated by [22]. This is 

necessary to average the cycles and then estimatethe mean square error between them, as shown in (5). Fig. 3 shows the 

result of this operation,where the blue vertical dashed lines delimit the signal cycles to a length equal to that of a 

cardiac cycle. 

 

 
Fig. 3. Envelope of maximum frequencies of a Doppler blood flow signal with cycles delimitation.  

 

Once the cycles has been delimited, the noise varianceis estimated, using wavelet decomposition. Then, a real value 

(greater than zero) for the parameter 𝛿[3] is proposed and the detection threshold is determined using (10). Finally it is 

possible identify the no-homogeneous cycles of the analyzed signal estimating the mean square error for each cycle and 

comparing it with the detection threshold, using (9). The result of all of these operations is shown in Fig. 4. 

 

In Fig.4 the cycles detected as affected by any noise source 𝑛𝑒 , are marked with circles and the cycles detected as non-

affected are marked with asterisks. The blue dashed line represents the detectionthreshold. It should be noted that, 
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cycles detected as affected match the cycles of the signal shown in Fig. 2 which exhibited a different behavior from the 

rest. 

 
Fig. 4. Classification of the signal cycles as affected (or non-homogeneous) and non-affected by noise 𝑛𝑒 . 

 

For a better appreciation of the difference between the cycles classified as affected and unaffected in Fig. 4, the Fig. 5 

shows, with the blue line, the final average cycle obtained with the proposed method and two set of cycles; in 5.a the 

cycles identified as affected (or non-homogeneous cycles) and 5.b the cycles identified as non-affected. 

 

 
Fig. 5. Final average cycle obtained with the method (blue line). (a) Affected cycles. (b) Non-affected cycles. 

 

As shown in Fig.5, there is a significant difference between the cycles detected as affected and the final average cycle 

(Fig. 5.a) and between cycles detected as non-affected and the final average cycle  (Fig.5.b). Non-homogeneous cycles 

(Fig. 5.a) show amplitude saturation at the bottom, which distorts the signal information and difficult to extract 

parameters for the determination of clinical indexesneeded for a correct diagnosis.Depending on the real application, 

the non-homogeneous cycles (or affected cycles) may be excluded for the estimation of the parameters needed for the 

clinical indexes computation [3]. 
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ECG signal 

 

The Fig.6 shown the 2500 samples of adenoised ECG signal sampled at 250 Hz. In addition, blue vertical dashed lines 

are used to delimit eachcardiac signal cycle.For a correct delimitation of the cycles, the Gaussian noise elimination 

techniques was applied firstly. 

 

 
Fig. 6. Denoised ECGsignal with cycles delimitation.  

 

As it can be seen in Fig. 6, the cycles 2, 3 and 4 of the ECG signal exhibit a completely different morphology from the 

rest. The goal is to identify these cycles, which will reveal the source of noise that originated them. 

As in the previous example, once the cyclesare delimited, the noise varianceis estimated, using wavelet decomposition. 

Then, a real value for the parameter 𝛿is proposed and the detectionthreshold is determined using (10). Then it is 

possible identify the no-homogeneous cycles of the ECG signal, estimating the mean square error for each cycle and 

comparing it with the detectionthreshold using (9). The result of all of these operations is shown in Fig. 7. 

 

 
Fig. 7. Classification of the signal cycles as affected (or non-homogeneous) and non-affected by noise 𝑛𝑒 . 

 

In Fig.7, the cycles detected as affected by any noise source 𝑛𝑒are marked with circles, and cycles detected as 

unaffected are marked with asterisks. The blue dashed line represents the detectionthreshold. It should be noted that 

cycles detected as affected match the segment of the signal shown in Fig. 6, which exhibited a behavior different from 

the rest. 

The identification of these non-homogeneous cycles, and its possible exclusion of the signal analysis, is useful for 

detection of important characteristics (complex QRS detection, arrhythmias, tachycardia, cardiac frequency, heart 

attack, etc.) for a correct diagnostic of the patient [3]. 
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V. CONCLUSION 

 
A method for detecting non-homogeneous cycles in quasi-periodic signals was proposed. Such detection is made based 

on comparisons with a threshold and the estimation of the variance of inherent noise affecting the signal under study. 

The method is independent of the signal carrying useful information and of the characteristics of distortions to be 

identified, which is an advantage over the most widely used methods such as those based on wavelets. 

 

The application of the method on two real signals, one of blood flow and other of ECG, was shown. Satisfactory results 

were obtained and was possible to identify the cycles of these signals which were affected by any noise component 

𝑛𝑒and do not constitute a source of reliable information for diagnosis. 
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