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INTRODUCTION

Let (X[) be a d-variate linear process independent of the form:

teN

F (G X) =P (XX Xy S %) (1)

Given the set of observations (Xi1,..., Xn),...,(Xn1,..., Xnn), I€tF (..., X,) =izn:1 be the empirical marginal

29T XueXg < xgd

distribution function, where 1a denotes the indication function of set A; we can then introduce the multivariate

.. n P .
empirical process ford— , @ normalizing factor to be discussed later.

n

The asymptotics for Gn(x4,...,xd) When the observables are independent and identically distributed (i.i.d.) or weakly
dependent has long been well understood by Dudley 11 for a review. In this paper, we shall focus instead on the
case where Xt is a long memory process, in a sense to be rigorously defined in section 2, Marinucci 2 developed
in the bivariate case. Our work can hence be seen as an extension to the multivariate case of bivariate results

from Marinucci [2]; see also Arcones B! for results in the multivariate Gaussian case.

The structure of this paper is as follow. In section 2, we introduce our main assumptions and we discuss Hilbert
space techniques for the analysis of multivariate long memory processes. Section 3 presents first a convergence

result for the finite dimensional distributions of Gn(x), xeR‘; the limiting elds can be viewed as straightforward
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extensions of the Hermite processes considered by Dobrushin and Major ¥, Tagqu 5! and many subsequent
authors. We then go on to establish a multivariate uniform reduction principale, which extends Dehling and Tagqu
6l and is instrumental for the main result of the paper, i.e. a functional central limit theorem for Gn(x), xeR®;
proofs of intermediary results are collected in the appendix.

n

G (Xeeer %) = (B (s %) = F O X)),

ASSUMPTIONS AND MOTIVATIONS

Our first condition relates to some unobservable sequences &t1,...,£0, Which we shall use as building blocks for the

processes of interest.

Condition A. The sequences {g;, t = 1,...} are jointly both Gaussian and independent, with zero mean, unit variance

and auto covariance functions satisfying, for 7 =0;+1,+2;...

V. (7) =E(&i&_. ) ~ Ly (r)|1'|_li 0< A4 <1 i=1..d 1)

Condition A.

It is a characterization of regular long memory behaviour, entailing that & have non-summable autocovariance
functions and a spectral density with a singularity at frequency zero (see for instance, Leipus and Viano [ for a
more general characterization of long memory). Here, ~ denotes that the ratio between the right and left-hand
sides tends to one, and La(.),a = &t1,... are positive slowly varying functions [&l,

Iimlt‘(—(cu)) =1 forallc>0and La(.) is integrable on every nite interval.
U— a u
The observable sequences (X, ), X, € R are subordinated to &:in the following sense.

Condition B.

For some real, measurable deterministic functions
wi(.), i=1,...d

Xy =¥ (EgsenrEg)reen Xg =Wy (g1 &g )

We stress that we are imposing no restriction other than measurability on ¥x;, for i = 1,...,d, and consequently

condition B covers a very broad range of marginal distributions on X in particular, although X: are strictly
stationary they need not have nite variances and hence be wide sense stationary. If we denote by ¢ (.), the
cumulative distribution function of a standard Gaussian variate. As in many previous contributions, our idea in this
paper is to expand the multivariate empirical process into orthogonal components, such that only a nite number
of them will be non-negligible asymptotically. Our presentation will follow the notation by Marinucci. Denote by

Hp(.) the p-th order Hermite polynomial, the first few being,

Ho (U)=1 H, (u)=u,H, (u)=u” -1, H,(u)=u’-3u,..

€1+ Py (U, Uy ) =Hp (). H y (Uy)}p, 201 =1,....d
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It is known that these functions form a complete orthogonal system in the Hilbert space
L, (R?, #(u,)..4(uy )du;...du, ), ¢#(u) denoting a standard Gaussian density. Also, for zero-mean, unit variance

variables (ew, €u, for | 6= k) with Gaussian joint distribution we have,

E[le (‘%) Hp (‘%k )]: P, !5,§kE(5{|5{k)pt 2)

ok =1
pl for pi = px and O if not.

Hence, under condition A,

1 n
651...pd (n)= E(_Zepl...pd (£--€ ))2

l..

DY ANCELV MRS
4=l -

where

{c(pl...pd;/11....,/1d)L§1l WL AP A g 2 pg Ay <1
ol (M) ~ asn— o

entif pA +apyd,>1

In view of (1) and (2), and using the same argument as in Taqqu [, theorem 3.1, and Marinucci [2]; here

Py A dy) =
PPy e ) = (e S = P =P )

We can expand 1X,; < X...X,; <X, into orthogonal components, as follows:

=& [T O X)I
1K, €% Xy g = 3 Y e ]

60 peo  (Pltpy 1?
- F(Xl X )+z Z M pl,,,pd (gtl...gtd)

€o.ps G

o opepeem Pl Ip,!
(3)
where the coefficients J pl...pd (X,...X,) are obtained by the standard projection formula
p1 pd(Xl Xg)=E@X, < X —Xm|)ep1 P (. gtd)
From (3) we have, for any fixed xe R®
E(FR,(00-F(X)*=>..> . Mo—; o, ()
i o (platpg ) ™ (@)

It is thus intuitive that the stochastic order of magnitude of Fn(x1,...,Xd) is determined by the lowest p1A1 + ... + poAd

terms corresponding to non-zero such that,
(Pyyees Py) = @rg min pA, +...+ pyA, St I (X)) #0fori=1....h.

In the sequel, it should be kept in mind that the cardinality of H (which we denoted h) can be larger than unity, i.e.

the minimum of p1A1 + ... + psAacan be non-unique; of course,

PuA + Py = Puy + Py, fori=1,....,h
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Condition C.

Condition C entails that the covariances of 1 are not summable, i.e. they display long memory behaviour.

Xig <% Xig X

p11ﬂ1 + pdl)’d <1
Note that for condition C to hold it is not necessary that the observables Xu,....Xqs are long memory; the auto-
covariances of one of them can be summable.

Now let,

Pii Pri R
Ay (Pgireeees Pig) = C(Pgsevver Pais Aponnn g )2 L2 (D). L2 (M) (P Pu)f2

n
be the square root of the asymptotic variance Oth =€ Igtd), we need the following technical

- . &
Pri A+ Pi A ( .

condition.

Condition D.

As N — oo exists and it is non-zero, i.e. there exist some positive, finite constants Ki,..., K, such that

fim3a(ParnPa) g g )
== d (P e Poi)

Of course, we have

L T YRy ey 6 1 () Y () P

i_ * * 1/2 * *
(P, Par Ay dg ) "2 L2 (). 04" (n)

Thus, condition D is a mild regularity assumption on the slowly varying functions L &, (n),...,L&4(n) .

MAIN RESULT

Define the random processes

H(r;p,, ..., pd)=J.Rpl....[]de QN & E00)- (N & E8
Py Py Py Py
<[T1 1 LT T1g 1 < w@d ) <x [W,@&5)
=1 ja=1 h=1 Ja=1
where W1(.)...Waq (.) are independent copies of a Gaussian white noise measure

on R, the integrals exclude the hyper diagonals, and

y exp(ir(&/ +...+§ljj ) -1
(G +..+8))

Q11 1 E)=C Py Py g )
(6)

forj=1,...,d.

Indeed, the following result is a direct extension of results by Marinucci 2]
Proposition 1
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Under conditions A, B,Cand D, xeR?,asn —» «

n ) .
et Pd-p_{z pd,<s>} z ot 7 (g, )

d (p11’ o Pa) I Pyt t=1 Pyt Py (7)

where = denotes weak convergence in the Skorohod space D[—oo;+oo]d andg, € RY. We provide now a uniform
reduction principle for the multivariate case.

Proposition 2

Under conditions A, B, Cand D, x e R?, as n — o

n () 1
F F E pll pdl _ _E feees :O
pXERdd (pll, . p ) | (X) (X) "”!pdi nt — pll pdl (gtl gtd)l

Theorem

Under conditions A, B, Cand D,x € R?, asn — o

(X)
TN Py Pai -
d ( Pros 1) (F,(x)— F(X))SZ pli"”!pdi H( p1I )

where = denotes weak convergence in the Skorohod space D[—oo;+oo]d .

APPENDIX

Proof of Proposition 1

In the sequel, we concentrate, for notational simplicity, on the case h = 1 and we write for brevity

Py = Ppyeees Py = Pgr 0, (Pryrees Pyy) =d,, when no confusion is possible. We focus first on the asymptotic
behavior of
Zepl pd (CAp—"
n t=1 (8)

Here our proof is basically the same as the well-known argument by Dobrushin and Major 4 for univariate Hermite
polynomials, and Marrinucci 2 for bivariate case, we omit many details. The sequences &t can be given a spectral
representation as

V4 . -
& =j7ﬁexp(|mj)dzj(dwj), j=1.....d
Where, by condition A and Zygmund’s lemma [10]

1

Z (dw,) = Zz(%) |w, [ W (dw), for j=1,....d,

@ropsin™

With governing spectral measures:
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G, (dw,):=E|Z,(dW,)?, for j=1,...,d

Hence, by the well-known formula relating Hermite polynomials to Wiener-lto integrals [11]

T pL
Houle)Hya(ea) =] e [z dw},)
j1

' pl

_ (WY +..+ Wy ) d

_x....xj.[_”;”]pde |_d| Z,(dw,)
J

d ' it (wd +....+wdd 2
-111 [ T.[Z' (dw})]
= i

Next we de ne new random measures on the Borel sets B[—nx, nz] by

- ﬁ]pl

/1]
Z,,(A)= 1/2( . ——Z. (nflA ) J=1..,dand A; e B[-nz;n7x], so that after the change of variables ¢, for
J,I=1,...,d, equation (8) becomes:
13 ' .
d_zepl pd( tr td) :J'[fnﬁm]pl"'j[—n;z;n;z]pd
n t=1

S g

=1 nC(p,, ..., pd;ﬂl Ay )}é
JTza0)- 12,020
h=l ja=1
[ _[ exp(i(& +...+ &) /)
[-nznz]lpl  J[-nz;nz]pd C(Dl, pd;/ﬂil,...,ﬂd )%

exp(i(& +..+ &) -1 & L d
[nexp(|(§l+ A &pg) I N) - 1]H Z,@&3)- ] Zw@e3a))

=1 Jg=1

Now consider the spectral measures,

G, (d9=E|Z;,(dS I, 7=1,....,d, and a piecewise constant modification of the Fourier transform, i.e.

I .
gon(ul’ p1+ +pd) J‘ exp(501§1 +"‘+.]p1 +"‘+pd é:pd ))

[-zzlpl+..+ pd

x | _zexp(lt(él T +§pd )/ l’l) | Gln (dé:l) Gdn (dipd)

Z (n- |T|)Yst1(T+j1)"'Ystd(T+jp1+...+pd)J

n =N

Wheret=t-sand j = [nU],...J,. ., = [NUg, ] the last step follows from
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)J

| exp(L+00Gm@ " [ ew(~i+096@
[-nz;nn] é/( )[ -nm;nuf n

~ ! .

_—le(n) y,(tt+j) I=1,...d,

The following result is a simple extension of lemma 1 in DM [#land lemma A.1 in Marrinucci [2,

Lemma 1.A

As n — oo we have, uniformly in every bounded region
Ilmwn(ull p1+ +pd) (p(ul’ p1+ +pd) ’
Where

1
C(Pysees Py Ao Ay ) 3

Pd

o] JIXFU [ dx.

Oty oty o )= j(z EAVNCAEY |)H|x+u [

Ja=1
Proof
Let
f (u,,...,u P X)= 1 (1- [nx] )VszI([nx]+j1 “.yatd([nx]_'—jd )
1 pl+.+pd ? C(pl,...., pd ;j.l,...,/ld) n—i](Lgt](n) n—ld(Lgld(n)

it can be verified that
(pn(ul' p1+ +pd ) J‘ f (ula pl+ +pd X)dX.

Now define the set

'%(u]_l p1+ +pd) {X Xl[l 1]|X+5u1|<5

As in DM 4, by the standard properties of slowly varying functions, it can be shown that, forany ¢, 6 >0

lim sup| f (u,,...,

N—00Uy .. Upy ...+ Py [<CXE[LINAG (Ug ool pa )

;X)- f(uy,..

pl+ +pd ?

Where

1
CPyywwe Pas Ao g )

To complete the proof, we just need to show that,

;X)dx=0

f(ul ' ""up1+...+pd ; X) =

lim [ ..

—0 pl+ +pd?
[-1;1]C|x+ul|<d
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!Sl_r)lg _[ fn (ul ! ""up1+...+pd ’ X)dX = O
[-1;1]CIx+ulf<o (10)
Forevery | =1,..., p1+ ... + pqg, such that |u/| <c. We assume without loss of generality that p4,...,pa# O, otherwise
we are back to the univariate case.
Choose a positive ¢ small enough that
PA +.t PyAy <1-90
Then

P2, cpPtre g Py
1- pl}\‘l —. Py }\‘d _(d_l)d) p27\'2 +¢ pd}\‘d +¢

Hence by Holder inequality we obtain for equation (10) that

pl
[ erncmenes FUy ool gt 0O CH{I LG ooy <5
Ji=

1A (1-prAq - py g -(d-1)f)
X | X+U i |1‘ P1/y - Py g -(d-1)f dX} Py
p2
=X
H{,[ [-1;1]C [x+u, [<o
J=1
P2ty (P2 *))

x| X+U, | P2Ao+/ dx} 72

pd Patg (pg4g /)
— Padgt S Pd
=X..X H{ I [-1:1]G x+u, |<(5| X+ Uja | dX}

Ja=1

=0(1) as 00

For (9), we can argue exactly as in DM [4], equations (3.9) - (3.10), to show that there must exist a >0, small
enough that

1-p(4 +)-...- py(7g T) >0

and such that

| T| Ao -0
|ya(T)|<CLa(n)n_/1a{?} =, A= &y,--5 8y
Then, again as in DM (1979), equation (3.11),we obtain

I [-1] A[x+y| <5

whence the proof can be completed by the same argument as for (10).

Py ~h-a
><...><I ||x+ujd| Jdx

Jja=l

,ﬂ:l,a

D
fo(Upyoes Up, +ot pd;x)|dx < c{j mwwﬂ(ﬁ{H|x+uj1|
-1

Lemma 2. A
Let Gjn be sequences of non-atomic spectral measures on B on tending locally weakly to d non-atomic spectral

measures Gjo, j = 1,..., d, Kn(€1,... €pd) @ Sequence of measurable functions on R¢ tending to a continuous function

Ko((g1,... €pd) in @any rectangle [-b; b]rix....x Let the [-b; b]rd, b € R functions Kn(.) satisfy the relation
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. 2
>!I—TO Pl 4 py [-bsb] py o+t Py kr (81"“’gpd >‘ G (dé:l)'"Gd" (d(’gpd )= 0 1D

uniformly for n = 0, 1....Then the Dobrushin-Wiener-Ito integral

jw...'[ Ko (61800 ) Zo,, (84)-- 2, (dEq)

exists, and as n —»w

jw...J K (80800 ) Zonn (08) - Zs, (dfd)adjkpl...J Kot ) 26, (46).-Z6 , (dE;)

where Zgjo(.) denotes a random to be dened below, and based on Gjo(.), j=1,... d

Proof
The proof is identical to the argument by DM (1979, p.41); the définition of local weak convergence is given on

page 31. Note that here we have d different random measures, Zgin(.) ... Zadn(.); as these d measures are

independent, however, the extension to product spaces is straight foward.

To establish the asymptotic behaviour of (8), we apply Lemma 2.A with the choice.

PG+ +E, ) M) (G +t g, ) -1

Kol 8,) = C(Pyyeves Py s Ag) NEXP(I(E +...+ &, ) M) =1)

K. (e £ )= 1 exp(i(&+..+&,,)) -1
T Oy Py d) (Gt ) I )

and

Gjo(d(:) :E|Zjo(d§)|2

Z,(do) = L S W@ j=1... d

2T (4,)sin {(1_;1)”}

The convergence of Kn (.) to K (.) in any rectangle [—b;b]™™ "™ b € R is immediate.

The convergence of the measures Gjn (.) to Gjo(.), j = 1,..., d is proved in Proposition 1 by DM 4. The crucial step is
then to show that equation (11) holds.

Consider the d measures

$ G, (). Gy (dE,)

1A =[[K (Eony)
and

16(A) = [ WKy 6y )| Gio(08)....Go ()

Note that ¢n(.) is the Fourier transform of un(.) and @n(.) is the Fourier transform of o(.). By lemma 1.A, ¢n (.)
converges to ¢(.) uniformly in every bounded region, and hence by lemma 2 in DM [l we have that un(.) tends
weakly to the measure po(.) ,which must be finite. Moreover, weak convergence entails that

§1+...+§de>b)=0

lim sup z,
b—o
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(Condition (1.14) in DM 1), and in turn this implies (11). We have thus shown that, as n—w

_Zepl Pa (Eqrenn€a) ¢ HE p;...p;),
n t=1 (12)

And also, if we view the left-and right-hand sides of (12) as constant random functions from

R¢ to R,

18 .o
28, g, e 6) g HEPP). inDEcice]’
n (13)

Now note that, for any p; ,J=1..d, Jp b, (X,s.-.s X4) belongs to D[—o0;0]° by its own definition;

------

proposition 1 then follows from the functional versionof Slutsky's lemma and the continuous mapping theorem,
see for instance Van Der Vaart and Wellner [12], section 1.4.

Now introduce the function

8,00 = ———"—{F, (9~ FG)}- Z e

P C L E4)} X eR?
d.(pren By) T St lp, N&g Papa «

For the arguments in the sequel, we use the following notation. Let a;; b; be any uplet of real numbers
—0<a; < bj < o0; we can define the blocks

A(a;;by) ={x;:a; <x;<b}, j=1..,d.

It is obvious that, if xai,...,xa, fori=1,...,1,and | = 15,...,L, are no decreasing sequences, then the sets

A, Xgiaq5- -3 Xgr Xg141) are all disjoint. Given any multivariate function T (X, ..., X;) R? 5> R, , we can
hence define an associated (signed) measure by,

TLACG ) Xyiagieo o3 X X))} = TAQKG 55 Xgrg) F TLAKG 55 %g )}

d I L
DD DT (X X )-
k,j=Lk=j i=l 1=l
The resulting measure can be random, for instance if we take T (;...; ..) = Sn (.;...; .) as we shall often do in the

sequel. The following result provides an extension of lemma 3.1 in Dehling and Tagqu (6! to the random measure
case.

Lemma 3.A
Under conditions A, B, C and D, there exist some v > 0 such that, as n —w

E|S{LJ|6| UleL A(Xll'X1|+1’ . dl’ d|+1)}‘ <CF{U|e| UIeL A(Xll’xll+l’ : XdI'XdIJrl)}n 14)

Proof

With p1...pd = p, in view of equation (3), we obtain
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E|S{U|el UIeL A(Xll'X1|+1"" dl? dl+1)}‘ Z

n pi---pd =1;(py.s Pg )JEH

I Ui Ui AGKG s 5 Xai Xar) 3

Xzepl Py (AP tz)‘
1
Zd—zE| )Y

PP =L ( Py Py )EH

I Ui Ui AGKy X505 Xar X)) 3

E{Zep1 Py (€ur- "‘9t2)}2

p1 ----- 'p,y!
< C:I:{LJieln- UIEL
Ay Xajgse -5 Xg X)) I
because
JofUicr Ui AGGH X553 X Xa0)3
Py Py =Li(Pywe Py )EH Pl tpy!
< ‘] {LJIE| U'EL A(Xll’X1|+1’ dl’ d|+1)}
PPy =L(Pr..... Py JEH pl!"'! Py !

< E[(]'Uiel Ui A(Xiivx1|v*l?---ixulvxdm)})]z
= F{Uiel--- UIeL---A(Xli s Xgigae s Xgr Xdl+1)}[l_F(')]
S F{Uic Uia ACGH Xy5--5 X Xara)}

X — E{z:epl oy (g1 85)F =cn’ some v>0

for all (p1...pa) such that pA, +...+ Py Ay > Pud +-. -+ Pydy
For notational simplicity and without loss of generality, we consider only the case h = 1; also, we write pl* p;,
for pfl, , Py, - We use a chaining argument which follows closely the well-known proof of Dehling and Taqqu 6.
Set
(X, Xy) = .fl(wl(ul,...,ud) Xy, Py (U, Uy) %)

X‘Hp; ) ...‘Hp; (U |4 (uy)..-g(u,) duy,

and
A%y, Xg) = F (e X))+ 106 %)
it can be readily verified that, for any give block A(a;;b;)

F{AGa;b)}+3 . - {AGa;; b,)| < A{A(a;;b;)}-
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The idea is to build a "fundamental" partition of R®Rd, such that A{A}<d *, for each A in this class and for a
fixed K e N. Starting from this fundamental class, we will then dene coarser partitions by summing blocks made

up with d"# x...xd" ™ fundamental elements, uj= 1,2,...,K for j = 1,...,d. The latter blocks will then be used in

a chaining argument to establish an uniform approximation of Sn(x1...,Xd). More precisely, put
. k
X ==, X, =infiA(x;,0) 2 3 A(0,0)}, k=0,...,d" -1

Xjgk =% in(ﬂj) = indk_luj!i =O,---,duj,
Xiok ==%0 Xj = inf{:A{A(Xjk!Xjk+1;w’ Xj)

> dikA{A(xjk,ij;—oo,oo}},k =0,...,d" -1,

o =0 X () =X dk,},ﬁl,i:O,...,d”j, j=0,...,d,

ji

X e =0,k =0,...,d*.

jd¥,

The sequences {X; , ()} _o:---d“ ... {X;i, (1)} o:-..,d" become finer and finer

aswandj=1,...,dgrow, i.e.

{0 () Ygre 007 {06 (a4 4D} gy 497
H{CTIIO7) ) TN e =t { (P 07" +1} ..., d“™, k=0,...,d" ~1.
Clearly, we have

X;i (K) = x;

Xj1 (K) = Xy -

For the following, we put i= j;, and j = j, .

Now consider the sets

. kit . kit
H . _ o (Gi+1)d™ (j+1)d . .
Al Ji e pg) = Uk:jdk"’l ---Ulzjdk—ud A(Xyer Xyeans -5 Xgrer Xarea )

_ o (+d (j+1)d*“*a .
= Uk:jd“’*'l "‘Uuzjdk’”d {(Xy o %)

X <Xy S Xy ioes X < Xg < Xy}

i=0,...,d-1 j=0,..,d“ -1,

which define a net of refining partitions of R?, i.e.
Ui gngUio gy Alivee Ji oo pty) = R forall g

Al dimy +1 oy +) < Alyeens ity i), foralli, j
Note also that

(i+1)d<" 1 (i+0)d < 1
AAG o St pi)}= D o D MAX Xygie -5 X X )
k=id<- 1=jd<"
< ddk’/ﬁ*w*/’d A(OO,,OO) _ A(w,,@)

ddk - ddkdk"'“ ‘gt

Define iy, (%), Jyu  (Xs) DY
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K—14 K—14 K—p4 .k K—p4 .k
X1 000" SX X0 @ Xy d <Xy < Xy, ko) d

And in Marinucci 21, we can use the decomposition

K-1 K-1

Sy (e Xg)= Do 2 S A, () e () D57 e 1)}
m=0 uy=0 (15)
K1 id;q (x)dKrtg
+z Sn{U A(Xlk ' X1k+1' o dj K k Xd )}
=0 k:idm (x)dk (16)

a1 +1(xg YA HIE 1

& (17)
+ Z Sn{U A(Xl|dl<(X1 (Xl) o1 dj i K¢ ’de+l,id|<(x1))}
#4=0 =gt (% )4
"'Sn{A (XlidK(m X dedK(xd) ' idK (Xl)' Xy )}-
(18)

in words, we have partitioned the random measure Sn(xy,...,Xa) over 2d sets of blocks: those were the corners are
all smaller than xi,...,xd (15), those where the corners have coordinate xa,...,Xs-1 and the top corners have
coordinate xq (16), those where the right corners have coordinate others variables x4,...,xd¢-1 (17), and a single
block which has (x4,...,Xa) as its top right corner (18). Now

i +10q)d 1 L.
Sn{kjk:id“1 (Xl)dKj'l A(X:I.k ’Xlk+l’ Tty ded Kigy ! k’ Xd )

Therefore,

Km-1_q

idﬁl+1(xl)d
< Fn{uk=im(xl)d*<*m A(Xlk'xlk+1’ deK(x k Xd )}

n
dn
n i +1(x)d< At
+ d_ F{ o ﬂl(xl)dK*/q (Xlk ’X1k+l’ de K( y' Xd )}

n

1 ig,q 1% ) d" 1 L p 0 ( Eireen td)
+—An{u:gdm(Xll)dK_;,l A% Xagars -+ Xy K Xd)}{lz = o

n 1.... 4 -

iy, H1(q)d< 1
< dig 1 . . ) )
- S”{uk=im(x1)dK"“ A(Xlk 2ATERERE Xde Kog) ! k’ Xde Kigy! k)}

I}

n g +L0q ) A i
+d—F{ukfi ko A( e Xk s - X K, ,k,xdde +1’k)}
d 1 (X1) () (xd)

n

1 g, +1(x)d<at p o ( S € )
+d_A{u:;Ilidm(>:1)dK'”1 (Xlk’X1k+1"" djg Kexgy ! K, X deK(xd)+1 )}{lz S

n S

+1(xg)dRat

idm
ﬁsn{ukam(xl)dw ACG Xz -3 Xk

d A(,...,0) o (gtl’ &q)
d dKer1 { Z p 1 |}

n 1 d-

K}

X
V] g Ky
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K-1
i +10q) 0171 . .
Z S”{kaid,,l(xl)dK"“ Ay Xy oo Xy Kegy) * k,Xs)}

=0
= i +1(x1)dK’*'1’1—1
< Z| S {Uk;’lidm(xl)d'("’l (Xlk X1k+1' T djd Kixg) 'k' ded Kixgysn ! k)}l
14 =0
R= vy ) opl NG
20 e
K-1

g +104 ) d< 1
1S {L, oaen A0 Xy oK X k00 K

/1120
i (o, +|Z €. p.,( 11""’gtd)|}.
", dK“‘l =P ep,!

By an identical argument in Marinucci (2005), finally, we have

SoAAKu w00y X054+ Xajy K5y Kexg) X0 )}
< Sn{A(Xlid K(x ) ’Xlid K(x, )+1; e de a K(Xg )hig K(xg)I! deld K (xg +1).ig K(xg) )}
d A(eo,...,0) n € (EqreiE)
e LD el Y
dn d t=1 PPyt
Since forany n>0

0 0

S

m=l =1 (/’tl +3) (/’ld +3)
we have

P{SUIO | Sy (% Xy ) [> 173

< Z Z P{max | S,{Ai,, () d gy, (%) A7)} > 77}

m=l py=l
S n
(14, +3)%. (1 +3)°

i +10q)d< 7 -1 .
+21 P{r?%)d( |S {Uk iy O < Ay Ko s oo X 4 Ky ? K, X 4 Kisgyoa?
Hy =

n
>
(1, +3)%...(k +3)2“”1)}

Japg +1(xg)d" 01 .
+Z P{maX | S {U d‘d (: )dK Hd A(X:lidK(xl) ’XlidK(xl)+l1 !|

=) Xy .. Xg

n
XdeK(xu)vidK(Xﬂ’denK(xu)+1'iuK(X1))}|> (ﬂ +3)2 (k+3)2(d—1)}
”

+P{Taxz( | Sn{A(XlidK(xl) K K ()41 0 X, Kirg) iaK (X4) ! X4, Koot "iaK (%) )}

_n
g

1 A(oo (tl' 2 Eq)

z P1 Pu |} 2}

n d

(d- 1)|3{d A, Oo)rn Z Cs. pﬁ( FERY m)|} 2}.

ddK pL.p,!

+d P{d
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Now note that, by lemma 3.A and Chebyshev's inequality,

n

(,u+3)2...(,ud +3)2}

S Al ()" i (%) 1ty )} >

{
SIS P{| S n{A(idK—m,_..,def’d sy pg )}|>(M+3)Z---(ﬂd +3)2}

d“1-1  drd b(,Lll+3)d2...(,ud +3)d2

SC e n nd }F{A(idKi/ﬁ,...,de_'ud;lLLl,---/ld)}
i=0 j=0
3 (u, +3)"
<Cn/f(/ul+ ) nd(/ud+ ) }
And hence
K-1 K-1

(14 +3)2 (g -1-3)2

o PEmax S, {Aig,, (%) 85, jdd (%, )5 ity ) 1>

<cn”?

3)d°... 3)d>... 2
('ul+ ) ('ud + ) }Scnﬁ (K :d3)

d } (19)

Equation (19) is immediately seen to be o (1). Also, in Marinucci [2], we obtain

d A(oo,... € p(s ----- & ) n
P + 1 -+ Pg (&g td 0
{d T { 'Z pLD }>d2}

A( ) ,
<P 10 @ pl pd(gll ----- fzd) L
{ d,d" ltzl: p,L.tp, 4d?

l n €. o . nd k-2d
<P d_lz P *Pd(u l)l :O(l)
t=1 A(OO, OO)

n eey

The remaining part of the argument is entirely an analogous

1
I — Fn -F .
dn(pll""'pdl)( (9=F9)

l 4 ‘]plll 1pd|( )J- S
= 5 o 'pdl)IZ:: L Ze ''''' 5 (€)}3+S5, (0.

From the prepositions 1and 2, we have, as n to infinity

P )
L ! I

Sup|S,(x) |=0(), X, & €R"and thus the result is established.
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