ISSN: 2321 - 6212
Okayasu村三
日本冈山大学
海报和接受抽象:启J垫。Sci >,
DOI:10.4172 / 2321 - 6212 c1 - 006
问题的声明:为了理解应变马氏体的形成(SIM)的奥氏体不锈钢、阶段纹理进行前后静态和循环荷载,即塑性变形是由故意。此外,现场测量的应变马氏体转变发生在拉伸加载在室温下进行。即使在低塑性应变机制,屈服应力与加载,SIM发生转换。但是,马氏体形成的面积分数并没有显著增加,即使样本加载极限抗拉强度。另一方面,循环荷载,马氏体形成时显著增加的面积分数最大的生产循环荷载超过80%。换句话说,SIM形成显然没有生产样品含有少于70%时,尽管这些样品完全断裂。没有明确的频率效应(1赫兹和30 hz)检测。分析,两种不同的SIM卡被澄清后塑性变形特征。获得的马氏体结构的孪生变形和滑移带。马氏体形成的严重性C含量的增加而增加。 It was found that martensite was formed mainly in austenitic stainless steel lacking Mo, whereas a high Mo content led to a strong martensite structure, i.e., a weak martensite. The formation of martensite occurred from austenite viamartensite, and was related to the slip deformation. The Mo element in austenitic stainless steel had high slip resistance (or stress-induced martensite transformation), due to the large size of the Mo atom. This resulted in the creation of weak martensite. The phase structures of the strained austenitic stainless steels were interpreted using a proposed, i.e., the martensitic transformations.